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In this video we are going to see the definition of the space of Square Integrable Functions.

This space is all important in the study of Fourier analysis. We will not study much about

Fourier analysis in this course, but what we are about to do in this video will definitely serve

as good motivation for the study of Fourier analysis in a future course. 

So, the definition of square integrable function is sort of an illustration of a statement that I

keep making that mathematicians are not very creative when it comes to naming stuff. Let F

be a function from I to R such that F squared is in L of I, then we say F is square integrable. 



So, those functions whose square are integrable are called square integrable functions. The

collection of all square integrable functions square integrable functions is denoted by L

squared I or L 2 of I more commonly. Now, first of all let me make a remark it is neither true

that L of I is a subset of L 2 of I nor is it true is it true that L 2 of I is a subset of L of I.

Neither of these statements are true. So, to see this consider the function x power minus half

on the interval 0 1 ok. You can check that this function is going to be in L of I, but the square

of this function which is just 1 by x this is not in L of I ok. So, this function x bar minus half

is not an element of L 2 of I its square is not integrable. 
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On the other hand, if you consider the function 1 by x on plus 1 infinity ok, then this function

is not this function is not Lebesgue integrable as you can check is not Lebesgue integrable,

but 1 by x squared is in L of 1 infinity. So, neither containment that you expect is not going to



hold true. However, we can write a sort of a trivial proposition which sort of gives one

common criteria for checking whether a function is square integrable. 

Suppose, F from I to R is Lebesgue integrable is Lebesgue integrable and bounded almost

everywhere, then F squared is Lebesgue integrable or in other words in other words F is an

element of L 2 of I. So, if you have a function that is both Lebesgue integrable and almost

everywhere bounded above then it is going to be Lebesgue integrable the square is going to be

Lebesgue integrable.
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Well, the proof is really nothing proof is really nothing. Well consider mod F squared; well

this mod F squared is going to be less than or equal to m times mod F where m is the bound

of course, this is true almost everywhere ok. 



So, this means that the function F squared which is of course, measurable because F is a

measurable function being Lebesgue integrable and modulus of F squared is bounded above

is bounded above almost everywhere by a Lebesgue integrable function by a Lebesgue

integrable function namely M times mod F by a Lebesgue integral function it follows from

earlier results that F squared is Lebesgue integrable as claimed.

So, this is one really simple and stupid criteria to check whether a function is Lebesgue

integrable sorry a square integrable. Now, another natural question that crops up is what type

of space is the space of square integrable functions. Well thankfully it is a vector space which

is the essential content of the next theorem.
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If F comma g are in L 2 of I then so, is a F plus bg where a and b are any real numbers. This is

essentially showing that the space of Lebesgue square integrable functions is actually going to



be a vector space. Proof; well what is a F plus bg the whole squared. Well this is nothing, but

a squared F squared plus 2 a b F g plus b squared g squared ok. 

Now, we already know that a squared F squared and b squared g squared are Lebesgue

integrable simply because F and g are assumed to be square integrable. What about this

middle term F g? Is this also going to be Lebesgue integrable? Is that clear, well observe that

mod F g is going to be less than or equal to F squared plus g squared by 2 ok. This just

follows from observing that F minus g the whole squared is greater than or equal to 0 and F

plus g the whole squared is also greater than or equal to 0.

From that it follows immediately that mod F g is less than or equal to F squared plus g

squared by 2, but this is Lebesgue integrable simply because F squared and g squared are

therefore, F squared plus g squared is and F squared plus g squared by 2 is also a Lebesgue

integrable. So, F g is a measurable function which is bounded above which is bounded above

by a Lebesgue integrable function therefore, by an earlier result F g will be Lebesgue

integrable.
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It follows that it follows that a F plus bg the whole squared is also a Lebesgue integrable. So,

as a corollary of this simple observation we get that the space L 2 I is a vector subspace of the

space of functions space of functions from I to R. So, the space of square integrable functions

is going to form a vector subspace. 

Now, we can define a norm or on this space L 2 I. Well what is this norm? Definition norm

on L 2 I if F comma g are in L 2 I, then define the inner product the inner product of F and g

to be just by definition integral over I of F g. This makes sense because we just saw in the

previous proposition that if F and g are square integrable, then the product is going to be

Lebesgue integrable therefore, this definition makes sense. Now, that you have an inner

product the norm is automatic.
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So, norm of a function F would be by definition integral of F squared I whole power half ok.

Now, that this thing is an inner product is left as an exercise for you; there is really nothing

much to prove. Show that the inner product we have defined we have defined is indeed an

inner product on L 2 of I. 

Only one property will fail so, let me put a star let me put a star because this is not going to be

entirely satisfying all the properties of an inner product. One caveat which you will have to

think over it is possible it is possible for inner product F comma F to be equal to 0 even if F is

not equal to 0.

The reason is if you have a function which is 0 almost everywhere then that function is

automatically going to be in L of I as we have remarked in earlier videos and the integral is



going to be 0. So, functions that are not identically 0 could have 0 norm under this inner

product and norm. 
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So, what is essentially going to happen is that; under this norm under this norm in quotes L 2

I is a semi normed vector semi normed vector space. So, something that satisfies all the

properties of a norm except for the fact that if the norm is 0 the function is 0 that is known as

a semi normed vector space.

Now, one thing that I must remark which is sort of a somewhat advanced remark at this stage

is that this is not really an issue this is not an issue. After all from the perspective of

integration theory two functions that are almost everywhere equal are indistinguishable

because their integrals are also equal.



So, what we can do is we can put a relation put a relation on L 2 I declaring two functions that

are almost everywhere equal to be related and then we can define the equivalence classes we

can define the equivalence classes. So, equivalence classes will consist of functions which are

pair wise almost everywhere equal.

We can define the equivalence classes to be the functions because from the perspective of the

Lebesgue integral, functions that are almost everywhere defined and almost everywhere equal

to other functions should be identified because the Lebesgue integrable is blind to almost

everywhere differences, that is sorry the Lebesgue integral is blind to differences on sets of

measure 0. 

So, two functions that are almost everywhere equal will behave exactly the same from the

perspective of the Lebesgue integral. So, what you do is you declare any two functions that

are almost everywhere equal to be the same. That is you do that formally by setting up an

equivalence relation. 

On this set of equivalence classes on the set of equivalence classes we get a norm not just a

semi norm ok. So, for many many technical purposes many authors identify functions that are

almost everywhere equal and study that space instead. Now, there are some annoying

technical issues that will crop up if you go this route. For instance, if you just take a

continuous function that makes no sense anymore because this function is part of an

equivalence class and that equivalence class has functions that are completely discontinuous

everywhere ok.

So, recall that the indicator function of the rationals is not continuous it is discontinuous

everywhere, but it is almost everywhere equal to 0. Therefore, the 0 function which is as nice

and as continuous as possible is in this perspective equal to the characteristic function of the

rational numbers which is everywhere discontinuous. So, this sort of annoying technicalities

can prop up, but that is part of life ok. So, one final remark if you do not go to this route.
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What you end up is the space L 2 I is a semi metric space is a semi metric space. What I mean

by that is it the definition d of F g by definition equal to norm F minus g will give a function

that satisfies all the properties of a metric space of a metric except that d F g could be equal to

0 even if F is not equal to g.

If F and g just agree almost everywhere still the distance between F and g will be 0. So, this is

what is known as a semi metric space. Of course, to check that it is a semi metric space you

can just appeal to the abstract results that we have shown. That once you have an inner

product you have a norm and once you have a norm you have a metric. This was all done way

back in the beginning of this course when we did a detailed study of metric spaces and norm

vector spaces and inner product spaces ok.



So, all the properties of the normed spaces will continue to hold except for this one caveat.

Let me just summarize the various properties that will hold and I am not going to provide a

proof because we have already proved it once when we studied the theory of metric spaces

and norm vector spaces.
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If F g and h are in L 2 of I and C is a real number, then we have these properties we have

inner product F g is inner product g F this you have to prove when you show that F the inner

product we defined is indeed an inner product you would show this as a part of that, but really

there is nothing to show it is just because integral F g is same as integral g F there is really

nothing to show.

And then you have integral of F plus g comma h is just integral F h plus integral g h. This is

again part of the proof that this is going to be an inner product again there is really nothing to



show this just says that integral of F into g plus h is integral F g plus integral F h which is just

immediate from the properties of the Lebesgue integral.

And three is the scalar thing integral C F comma g is C times integral F comma g again

straight forward trivial to show. And then you get the properties of the norm which I have

which we have already shown once when we studied norm vector spaces. Norm C F is norm

C sorry absolute value of C times norm of F.

And then we have the famous Cauchy Schwarz inequality which says that absolute value of

inner product of F g is less than or equal to norm F norm g. This will follow from the abstract

Cauchy Schwarz inequality we proved long back. And finally, a consequence of the Cauchy

Schwarz inequality which is the triangle inequality norm of F plus g is less than or equal to

norm F plus norm g. So, this is just a summary of the properties enjoyed by this norm on this

semi normed vector space L 2 of I. In next week’s videos we will see some convergence

theorems on L 2 of I and also show that L 2 of I is a complete space.

This is a course on real analysis and you have just watched the video on square integrable

functions.


