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We have developed a powerful integral the lebesgue integral, one nice side effect of our

construction is that we can get a solution to the problem of measure. Recall that the problem

of measure asks us to assign for any subset of the real numbers a length.

This length should agree with the length on intervals the length of an interval a b is just b

minus a irrespective of whether a or b is there in that set or not. We want to find a countable

additive notion of length that agrees with the length on intervals. The solution is to observe

that if a b is subset of R, let us say for concreteness sake I am taking the open interval a b then



b minus a is just integral of 1 on R on a to b, b minus a is just the integral of the function 1 on

from a to b.
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So, what we now do is you consider a new function which is we define it to be chi a b. This

function is defined to be 1 if x is in a b 0 otherwise. Then it is clear that b minus a is nothing,

but the integral of chi a b over R ok easy check. So, you can obtain the length of an interval

by integrating this associated function.
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So, this prompts the following natural definition of that of a characteristic function. So, this is

called characteristic or indicator function. Let us subset of R we define the characteristic or

indicator function of S to be the function to be the function chi S.

Which is defined to be chi S of x is 1 if x is in S equal to 0 if x is not in S ok. Now, this the

name characteristic or indicator function of S is self explanatory at any point of the set it

gives the value 1 otherwise it gives the value 0.

Let me make a side remark here in the measure theoretic approach to integral you already

have a notion of measure for sets. Once you have the notion of measure for sets you can

define the integral you can define the integral of this chi S to be just the measure of S.



So, essentially what will happen in the classical treatment of measure theory first and integral

second is the reverse of what is going to happen now. What we are going to now do is define

the measure of a set to be the integral of the characteristic function.
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So, let us make that formal definition this is measure of a set let S subset of R we say S is

measurable if chi S from R to R is in M of I. So, if the characteristic function of the set is

measurable then we say the set itself is measurable.

Furthermore if chi S is lebesgue integrable on R then we define we define the measure which

we call traditionally mu; mu of S is by definition just the integral over R of chi S. If S is

measurable, but not integrable, but chi S is not integrable then mu of S is by definition plus

infinity ok.



So, the only way by which the characteristic function which is a non negative function can

fail to be integrable on R is if it is sort of going to take an infinite value that is the motivation

behind defining mu of S to be plus infinity, if the characteristic function is measurable, but

not integrable.
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Now, immediate example you can see that you can see that mu of R is plus infinity then mu

of any interval of the type minus infinity a is also plus infinity mu of a, b is going to be b

minus a etcetera ok. So, in other words the measure the function mu agrees with the length on

intervals and this is rather straightforward to see.

Now, is there any other larger class of measurable sets, and what is the measure of such sets

going to be? Well the next simple proposition a sort of is very basic and tells us that sets of

measures 0 are a measurable and b their measure is 0. If that were not the case the



nomenclature given by mathematicians would be extraordinarily stupid. So, let S subset of R

be a set of measure 0, then S is measurable and mu of S is 0. Conversely if S subset of R is

measurable.
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And integral of chi S is 0 then S is a set of measure 0 ok. Let us prove both parts proof

suppose S is a set of measure 0 ok, then chi S is 0 almost everywhere this is just by definition

this is just by definition the function chi S is 0 almost everywhere.

We have already shown we have already shown that if a function agrees almost everywhere

with an integrable function, then the function is integrable function is integrable and the

integral values agree.



We had shown this one once I mean as part of when we developed the theory of the lebesgue

integral and convergence theorem and the integrals agree. So, therefore, we immediately get

that integral of chi S is 0 as claimed. So, a set of measure 0 will be measurable and in fact, mu

of S would be 0. Thank god ok.
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Now for the converse conversely suppose chi S integral over R is 0 ok. Now ,what you do is

you define this function F n of x to be just equal to chi S of x, that is F n is just chi S ok and

look at summation chi S of x look at this summation. Now, notice that if you call this so,

what you do is instead of defining F n to be chi S.
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Define F n of x to be summation n equals or rather summation K equals 1 to n F n ok. Now,

notice that Fn’S are non negative are non negative and integral of F n is just integral

summation first of all integral K over R K equals 1 to n chi S which is just integral over R,

but summation is now outside K equals 1 to n chi S which is 0 ok.
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So, each integral F n is 0, consequently by the monotone convergence theorem the monotone

convergence theorem this summation F n this function n equals 1 to infinity this converges

almost everywhere. To a integrable function whose integral is 0 ok, this is just the monotone

convergence theorem.

So, if you take an element x in S then clearly the series does not converge, clearly series does

not converge. This means that S is a set of measure 0 because this series summation F n must

converge outside a set of measure 0 it does not converge on S, consequently S must be a set

of measure 0 as claimed, might look like a roundabout way of showing it, but nothing really

deep is happening excellent.

Now, we have got a nice collection of sets that are definitely going to be measurable they are

all the sets which are sets of measure 0. We want to enlarge and see that this collection of



measurable sets is in fact, large. In fact, it will be so large that the only way to construct a non

measurable set will be to appeal to the axiom of choice.

Please revisit some remarks I made when we showed that the set of measurable functions is in

fact, closed under taking point wise limit. It is very hard in practice to land up with a non

measurable function, it is equally hard to land up with a non measurable set for all practical

purposes you can assume that all sets are measurable. Anyway we still need to see some

examples some concrete examples of measurable sets which are not just intervals or sets of

measure 0.
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Also just one example if A and B are both are measurable and A subset of B A subset of B

then you can check easily that mu of A is less than mu of B this just sort of follows from the



monotonicity property of the lebesgue integral ok. Keep this in mind because this will be

repeatedly used without mention.

Theorem, we are going to show that some natural set theoretic operations do not take us

outside of the class of measurable sets if S comma T subset of R are measurable, then S set

minus T is also measurable. And if Si and if Si subset of R are measurable then so are union i

equals 1 to infinity Si and intersection Si i equals 1 to infinity.

Arbitrary not arbitrary countable union and countable intersection of measurable sets are

measurable. For computing the measure of this union just wait a moment the next theorem

that we study will sort of tell you that there is some sort of additivity which is very nice.
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Proof, for the first part it is just a simple observation observe that chi of S minus T is just chi

of S minus chi of S times chi of T. To see why this is true note that chi of S minus T is non

zero precisely if you have a point of S which is not also a point of T that is why we are

subtracting chi of S into chi of T; chi of S into chi of T will be non zero precisely on S

intersection T. So, chi of S minus T is chi of S minus chi of S into chi of T. .

Now, by assumption chi S and chi T are measurable they are measurable and therefore so is

and therefore so is the product chi S chi T. Because we have proved a proposition that says

that any continuous combination of measurable functions is measurable and so, is and chi of

S minus chi of S chi of T excellent.

So, this shows that the difference of two measurable sets is measurable. Now, coming to the

union and intersection that is actually easier than this. Notice that if you define U n to be just

union i equals 1 to n S i. And V n to be by definition intersection i equals 1 to n V i sorry Si,

then chi of U n is nothing but max of chi S 1 to chi S n and chi of V n is nothing, but the

minimum of chi of S 1 to chi of S n.

Well the easiest way to see this is to close your eyes and contemplate it for a few seconds and

you will get it there is no explanation I could give that it will convince you of this it is so

trivial ok.
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Now, that you have this each of each chi U n and chi V n are measurable being the maximum

and minimum of measurable sets again recall that any continuous combination of measurable

functions is going to be measurable ok..

Furthermore if you define U to be union i equals 1 to infinity Si and V to be intersection i

equals 1 to infinity Si, then this chi U n; obviously, converges to chi U and chi V n converges

to chi V right. Which shows that chi U n and sorry chi U and chi V being the limits being

limits of measurable functions is measurable. This is one nice property of the class of

measurable functions being limits of measurable functions are both measurable.



So, this concludes the proof that unions countable unions and countable intersections of

measurable sets are continued to be measurable. Now, we want to deal with that main

property of this lebesgue measure that is that of integrability sorry additivity.
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What this additivity says is that if you take two disjoint sets then the measure of the union is

the sum of the measures which is natural, we will now first prove it for two sets then later

extend it for a countable union. This is a powerful property and this is very useful in proving

various stuff about measurable sets.

If A comma B subset of R are disjoint measurable sets then mu of A union B is mu of a plus

mu of B ok, note that no assumption is made about whether these sets are going to have a

finite measure or not no such assumption is made.



Proof well first of all A union B is measurable we have just shown that ok and because of the

disjoint nature of A and B this union if you call it S chi of S is just chi of A plus chi of B ok.

Now, suppose chi S is integrable then both chi A and chi B are less than or equal to chi S.

And since these are already measurable this means chi A and chi B are integrable. We have

already seen that any measurable function whose absolute value is dominated by an integrable

function is integrable. So, this means chi A and chi B are integrable.
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And it follows that integral of chi S over R is just integral over R chi A plus integral over R

chi B. This is just by the additivity property of the lebesgue integral. So, in other words mu of

S equal to mu of A plus mu of B.

Now, if chi S were not integrable were not integrable then by definition mu of S is infinity mu

of S is infinity and either chi A or chi B must not be integrable because if chi A and chi B



were both integrable then chi S would be integrable because chi S is just chi A plus chi B ok.

Which means either mu of A or mu of B or even both could is plus infinity.

So, with this additivity holds even in this scenario where one of the sets is not going to have a

finite measure ok. So, immediately by induction, so we are done with that proof.
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So, immediately by induction we get that if Ai are pairwise disjoint measurable sets, then you

get that some mu of union i equals 1 to n Ai is just summation mu of Ai i equals 1 to n this is

just obtained by the previous theorem just by applying induction ok.

Now, the question is what if you had i equals 1 to infinity if you had infinitely many

countably infinitely many measurable disjoint sets, is it still true that the measure of the union

is the sum of the measures of the individual sets. Well thankfully this is also true and this will



be the major theorem of this section, this is the countable additivity of the lebesgue measure

the lebesgue measure.

So, it states the following let Ai be a countable pairwise disjoint measurable sets. Then mu of

union i equals 1 to infinity Ai is just summation mu of Ai i running from 1 to infinity. So, we

have countable additivity of the lebesgue measure.
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Proof, and all of these proofs are just standard somehow try to apply a convergence theorem.

So, you define T n to be just union i equals 1 to n of Ti and you consider chi n to be just

shortcut for chi of T n. And T you define it to be union i equals 1 to n one second I made a

mistake here this is Ai ok. So, T you defined to be i equals 1 to infinity Ai ok.



Then by finite additivity which we have just established mu of T n is nothing, but summation

i equals 1 to n mu of Ai, this is just by finite additivity ok. Now, the goal is to prove that mu

of T n converges to mu of T right.

Now, because T n plus 1 contains T n we get mu of T n is less than or equal to mu of T n plus

1, this is just by the monotonicity property of the lebesgue integral which we have already

mentioned. So, this collection mu of T n or the sequence mu of T n is a monotone increasing

sequence monotone increasing sequence ok.
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Now, again we will have to split up into two cases; case 1 mu of T is infinite. Now, this

means that integral essentially what does this mean; this means that the function chi of T is

not integrable ok.



Now, observe that chi of T n is a monotone sequence is a monotone sequence of functions

that converge to chi T. But, since chi of T is assumed to be not lebesgue integrable that

means, the hypothesis of the monotone convergence theorem cannot be satisfied.

Hypothesis of the monotone convergence theorem monotone convergence theorem cannot be

satisfied because the conclusion of the monotone convergence theorem is that the limit

function is integrable. Since, we are ending up with a non integrable limit function the

hypothesis cannot be satisfied.

Now, what were the hypothesis of the monotone convergence theorem well the hypothesis

were in translated to our particular situation each chi T n is in L of I, that was one of the

hypothesis and this collection integral chi T n this is a set that is bounded above right. So, one

of these will have to fail.
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Well if chi of T n is not in L I for some n is not in L I for some n, then by definition mu of T n

is plus infinity, we already have mu of T is plus infinity that is our global assumption in this

case. So, put together we will get mu of T mu of T is limit and going to infinity of mu of T n

ok in this scenario. On the other hand it can happen that this integral of chi T n is unbounded

is not bounded above, which just means that mu of T is limit n going to infinity of mu of T n.

So, in either ways by which the hypothesis of the monotone convergence theorem can fail in

both scenarios we end up with mu of T is limit n going to infinity of mu of T n as required.
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On the other hand if case 2 mu of T is finite ok this means that chi T is integrable

consequently each chi T n is also integrable simply because chi T dominates chi T n and chi T

n is measurable which just means that by monotone convergence theorem limit n going to

infinity of chi T n is equal to chi T ok. In fact, we need we cannot use monotone convergence

theorem for this we need the dominated convergence theorem.
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By dominated convergence theorem limit n going to infinity chi T n equal to chi T excellent.

So, this concludes the proof. So, we have countable additivity of the lebesgue measure. So, let

me just summarize a bit of useful information by giving a definition.



(Refer Slide Time: 30:43)

Let p subset of power set of R be a collection of sets. We say p is a sigma algebra if it is

closed under countable union complements and if empty set comma R are both elements of p.

A collection of sets such that the empty set the whole real numbers and this collection should

be closed under countable union and complements, closed under countable union and

complement means if S is an element of rho then R minus S or let us call this p naught rho.

If S is an element of p R minus S is also an element of p. If Si are in p then union i equals 1 to

infinity Si is also in p ok. So, why am I making this definition well it can summarize all the

properties that we have the function. So, define p subset of power set of R to be the

measurable sets to be the measurable sets.
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Then we can summarize everything that we have done in this video by saying this p is a

sigma algebra and mu from this p to R plus union 0 is a countable additive function on p that

agrees with length on intervals ok. And p is a sigma algebra that contains all intervals

contains all intervals.

We can summarize the entire discussion here. So, of course, the fact that the empty set and R

are the measurable is rather obvious and the fact that we have countable additivity we have

just shown. The fact that this is the sigma algebra is just a consequence of the fact that R is

there in this collection p and it is closed under complementation which we have already

shown.

So, in the measure theoretic approach to constructing the lebesgue integral we start with the

sigma algebra and try to construct a measure on that sigma algebra and then from that



measure you try to go to the integral by defining the integral of a characteristic function to be

just the measure of that set.

And then we proceed to define what are known as simple functions which are just linear

combinations of characteristic functions and then you take the limits of such functions and

then define the integral in more or less a similar way with to what we have done.

So, this is an alternative approach to the theory of measure going via integrals. This is a

course on real analysis and you have just watched the video on solution to the problem of

measure.


