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In this video we shall define a class of functions that arise as then increasing limit of step

functions and we will also define how to define the integral of such functions. To begin with

we need a simple lemma. This talks about the behavior of the limit of an increasing sequence

of functions. Let t n be an increasing sequence of step functions increasing sequence of step

functions such that S n sorry t n increases to a function F almost everywhere on the interval I.

So, these t ns are from I to R, ok. Further assume that integral of t n over I converges. Then if

R if t from I to R is any step function such that t is less than or equal to F almost everywhere



on I, then integral of t is less than limit n going to infinity of integral of t n. So, this is a

somewhat technical sounding lemma, but this will be the basis for the definition of the

integral of the upper functions.

What it is essentially trying to say is the following. If you have a sequence of a step functions

that increase to a given function, then no step function that is less than or equal to the limit

function can have a greater integral. That is essentially what this is saying as you can guess

we are going to define the integral of the function f using this formula and this fact that

integral of t over I is less than or equal to limit n going to infinity integral of I t n will sort of

help us to prove the well definedness of the integral of the function F.
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So, let us see the proof the lemma looks technical the proof is rather trivial. It just follows

immediately from the previous theorem that says that if you have a sequence of step functions



that decrease almost everywhere to a function a to 0 then the integrals also converge to 0.

Now, what we are going to do is, we are we are not in the situation of the previous theorem.

The previous theorem had a decreasing sequence of step functions.

So, we manufacture a decreasing sequence of step functions using this sequence of step

functions t n. So, what we do is we define we define S n x by definition to be equal to t n x

sorry, t of x minus t n x if t of x is greater than or equal to t n x; remember t is some step

function that is less than or equal to f 0 otherwise. So, in more fancier notation S n x is just

the maximum of t n x sorry, t of x t of x minus t n x and 0, ok.

Now, observe that t n increases to f almost everywhere and t of x is less than or equal to f of x

almost everywhere. Combining both it follows from.
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Let us call this star it follows from star that S n decreases almost everywhere to 0, ok. Since t

n’s are an increasing sequence of functions it is clear that S n’s are decreasing and

furthermore they must decrease to 0 because t n’s converge almost everywhere to F. So, at

some point of time t n has to become greater than t because t is less than or equal to F. So,

this first term has to become less than or equal to 0 after a point in which case this maximum

will become 0.

So, from the previous theorem from the previous theorem integral of S n over I converges to

0. Now, because S n of x is greater than or equal to t of x minus t n of x because it is the

maximum of this quantity comma 0, using the various properties of step integral integrals of

step functions we get integral over I S n of x is greater than or equal to integral over I t of x

minus integral over of integral over I t n x, right.
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Now, let n go to infinity n go to infinity. So, we get limit integral over I S n of x n going to

infinity which is just 0 and this is greater than or equal to integral over I t of x minus integral

over I t n of x limit n going to infinity. In other words, we get integral over I of t is less than

or equal to integral over I t n limit n going to infinity as claimed.

With this basic lemma in hand, we can now define upper functions which is going to be a

class of functions and we can define the integral for upper functions.
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So, the definition is as follows definition is as follows. A real valued function a real valued

function F from I to R, where I is some general interval is called an upper function an upper

function if we can find we can find an increasing sequence of step functions S n such that S n

increases to F almost everywhere and limit n going to infinity integral over I S n is finite, ok.



If you can find a sequence of increasing functions which increase almost everywhere to F then

we say F is an upper function. The collection of upper functions is denoted U of I. The

sequence S n is said to generate F that is for a sequence of step functions to generate F first of

all it must be increasing, second of all it must increase almost everywhere to F, third point the

integral should the limit of the integral should be finite.

We define we define integral of F over I by definition to be the limit as hinted before several

times, ok. Now, notice that this sequence integral of I S n because S n’s are increasing

because of the property of integrals of step functions. This sequence integral I S n is also an

increasing sequence. So, for this limit to exist it actually it is actually enough to assume that

this sequence of integrals is actually bounded above. That is an another equivalent way of

stating the same thing.

Now, the crucial part is there could be several sequences of step functions that generate F.

What is the guarantee that all of them lead to the same value of integral of F over I?

Essentially what is the guarantee that this collection of functions U of I the integral defined on

this collection why is it well defined. Well, that is the content of the next theorem.
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So, this theorem says well definedness of the integral of the integral. So, let F be an upper

function and let S n comma t n from I to R generate F then integral of S n limit n going to

infinity is equal to limit n going to infinity integral of t n, ok. Now, observe the following I

mean this proof is rather an easy consequence of the previous lemma. So, observe that each t

n is less than or equal to F almost everywhere.

So, if you look at the previous lemma you look at the previous lemma it says that if you have

a step function t which is less than or equal to F almost everywhere and the sequence of

functions t n increase almost everywhere to F then integral of that t is less than limit n going

to infinity of t n integral t n. So, what that shows the previous lemma immediately gives us

the previous lemma gives integral of t n I is less than or equal to limit n going to infinity of

integral of I S n, ok.



And, you can just pass to the limit on the left hand side also. So, we get that limit n going to

infinity integral of I t n is less than or equal to limit n going to infinity integral of I s n.
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By symmetry we get the opposite inequality same argument we get the opposite inequality.

We are done. So, the well definedness of the integral is very easy to show from the lemma

and ultimately that lemma was a consequence of the behavior of decreasing sequences of step

functions.

So, ultimately everything hinges on the theorem that we did in the previous video, ok. Now,

let us state some simple properties of this upper integral and we will in the next few videos

we will extend this definition to a larger class and this next theorem sort of highlights the



problem with this particular collection of functions. It is not really a vector space which is

sort of not nice.

Let F be an upper function let F be an upper function and g also an upper function then

number i, F plus g is an upper function and integral of F plus g over I is just integral of I F

plus integral of I g. Number ii, here is the problem if C is greater than 0, then C F is an upper

function and integral of C F over I is C times integral F. So, here we actually require C greater

than or equal to 0.

There are upper functions whose negative is not an upper function and this is sort of

problematic. This is sort of problematic and not nice. There are explicit examples you can

check apostles exercises where there is an explicit example listed.

(Refer Slide Time: 14:30)



Property iii: if F is less than or equal to g almost everywhere on I, then integral over I F is

integral less than or equal to integral over I g, ok. So, parts i and ii, i and ii follow from

definitions there is not really nothing to prove follow from definitions, ok and I want you to

prove ii in particular a i is pretty much trivial I want you to prove ii in some detail and see

where the proof breaks down if C is less than 0 that is a very instructive exercise.

Let us move on to the proof of part iii. Let S n be a sequence of step functions of step

functions that generate F and let t n be a sequence of step functions that generate g. Now, the

hypothesis is that F is less than or equal to g almost everywhere on the interval I ok; that

means, S m of x is less than or equal to F of x is less than or equal to g of x which is nothing

but limit n going to infinity of t n of x and these equal inequalities and equalities are true

almost everywhere ok.

Now, that means, from the previous theorem that we had the big theorem about what happens

if a step function sequence of step functions converge to a function F.
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If you take any other step function that is lesser than or equal to that function, then we

definitely have integral over I of S m is less than or equal to limit n going to infinity integral

over I t n which is equal to integral over I g this just follows from the big theorem which we

proved in the last video.

Now, taking limits on the left hand side taking m going to infinity we get integral over I F is

less than or equal to integral over I g. So, this was a fairly straightforward proof. An easy

corollary of this is something that you might have anticipated already. Let F comma g be

upper functions on the interval I and suppose F is equal to g almost everywhere then integral

of I F is integral of I g.

And, this follows immediately by observing that F equal to g almost everywhere is the same

as saying F less than or equal to g almost everywhere and g less than or equal to F almost



everywhere and applying the previous result. So, we have now shown one nice property of the

Lebesgue integral. In there for the Riemann integral we know that a necessary and sufficient

condition for the existence of the Riemann integral is the set of discontinuities being a set of

measure 0.

But, you can take a function and modify it on a set of measure 0 to make it discontinuous

everywhere. Please think about the remark I said carefully what will happen is you can start

with the continuous function and just modify it on a really small set to not make it Riemann

integrable. That is not something that you want from an elegant theory of integration.

Here in the case of Lebesgue integral which we are going to eventually define at least for

upper functions if you have two upper functions that agree almost everywhere then their

integrals are actually equal which is what we sort of expect, because these two functions are

the same except on a negligible set, ok. So, the last few properties that I want to prove for the

integral on upper functions is about their property when you break up the interval.
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For that the following technical looking thing is useful. So, let me call it a lemma which is

going to be used in the next theorem about breaking up the intervals, the lemma is as follows.

Let F comma g be upper functions then both max F g as well as minimum F g are also upper

functions.

And, the again the proof of this is rather straightforward pretty much everything I have done

except for the proof of that theorem about monotone sequences where a little bit of analysis

was actually involved pretty much everything is just a straightforward corollary of that

theorem and the various definitions that we have.

So, what we do is let S n generate F and let t n generate g, this is sort of the standard first line

boiler plate for every single lemma. Now, we want a sequence that generates max F g and min

F g and you can easily check that max of S n, t n is a sequence of step functions sequence of



step functions that generate F. Let us just call this sequence u n and similarly, v n equal to

minimum of S n t n generate g.
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Now, actually I should not technically be using the fact that I mean I should not technically

say generate F, so, to be 100 percent precise what we will do is we will consider u n equal to

max S n comma t n and v n equal to min S n comma t n.

All we can assert is u n increases to max F g almost everywhere and v n increases to min F g

almost everywhere. Remember, when you say that a sequence generates a given upper

function you will have to first of all show that the integrals the limit of the integrals converge

only then is actually the limit function even an upper function in the first place. So, we know

that both u n and v n increase to max F g.



So, what we have to show is integral of I u n and integral of I v n exist and as I have remarked

earlier actually the limits limit n going to infinity of both of this exist as I have remarked

earlier because v n’s are increasing this is actually going to be an increasing sequence the

integral over I v n. So, it is suffices to prove that this sequence is actually bounded above.
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And, it is rather easy to see that this sequence is bounded above simply because v n is less

than or equal to F almost everywhere, right and this just follows because v n is defined to be

minimum of S n comma t n and S n is less than or equal to F almost everywhere.

So, because v n is less than or equal to F it follows that integral of I v n is less than or equal to

integral of I F. This is by part 3 of the previous of previous theorem. This shows that integral



of I v n this sequence this set is bounded above. So, that shows that minimum of F g is an

upper function, ok.

Now, how do you show that max of F g is an upper function you cannot pull the same trick

because you do not have u n is less than or equal to F for obvious reasons. So, what you do is

you try to be slightly clever you observe that maximum of this S n comma t n is actually just

S n plus t n minus v n ok. In other words, finding out the maximum of the two quantities is

same as summing up the two quantities and subtracting the lesser of the two quantities

intuitively obvious and that is what we have used here.

So, u n is S n plus t n minus v n therefore, by the algebraic properties of the integrals for step

functions note these are all step functions I already remarked that when you have a function F

it is not guaranteed that the negative of the function is an upper function you can write this

simply because these are all step functions integral of I u n is integral of I S n plus integral of

I t n minus integral of I v n ok.
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And, as limit n goes to infinity this is just integral of I u n limit n going to infinity of this is

just integral of I F plus integral of I g plus integral of I is not plus minus, minus integral of I

minimum of F g. And, that finishes the proof we have already shown that mean this integral

exists and therefore, we are done. So, we are done. So, this somewhat technical looking

lemma we are going to use to show that you can split the interval of definition of an upper

integral upper function and evaluate the integral by breaking up the intervals.

So, let us state the theorem let F be an upper function on the interval I. suppose I am going to

state it for just two intervals, you can use induction and prove the same thing for finitely

many integrals. Suppose, I is I 1 union I 2 where I 1 and I 2 are intervals with no interior point

in common are intervals with no interior point in common interior point in common. Then

integral of I F is just integral of I sorry, integral of I one F plus integral of I 2 F. So, you can



split the definition the domain of definition into two intervals and then you can evaluate by

evaluating the integral on the two pieces separately.
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Similarly, suppose F 1 is an upper function on I 1 and F 2 is an upper function on I 2 and we

define the new function g to be F 1 of x if x is in I 1 and F 2 of x if x is in I 2 technically this

definition is not exactly precise because it can happen that there is an end point in common

between I 1 and I 2 with the understanding with the understanding that understanding that we

define F to be some value at the define F sorry, g to be some value at I 1 intersection I 2.

It really does not matter whatever value you put, you can choose your favorite real number

and put F to be that in that place. One second, I think I missed one crucial hypothesis. I

actually require F is an upper function and F is greater than or equal to 0 almost everywhere.



You will understand why I am going to put this hypothesis why I need to put this hypothesis

here in the proof for this it does not matter.

For this second part it really does not matter, F 1 and F 2 could be any upper functions

whatsoever. Then g is in u of I and integral of I g is just integral of I 1 F 1 plus integral of I 2

F 2, ok. So, this second part I am going to leave this second part I am going to leave it to you

it is fairly easy. Let us deal with the first part.
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And, see where that extra hypothesis that you need F greater than or equal to 0 almost

everywhere where is that used. So, let us go on to the proof. So, let S n generate F. Now, I

want to use this S n to generate sequence of positive step functions.



So, what I do is I look at max of S n comma 0 and I call that S n plus ok because F is greater

than or equal to 0 almost everywhere, we have S n plus S n plus also generate F ok. Here is

the crucial part where I required that F is greater than or equal to 0 almost everywhere. The

fact that S n pluses are increasing is obvious because S n is increasing, but the fact that S n

plus increases to F almost everywhere requires F to be greater than or equal to 0 ok.

Now, note that integral of I 1 of S n plus is obviously, less than or equal to integral of I S n

plus which is in turn less than or equal to integral over I F ok which means S n plus generates

F restricted to I 1. So, for this inequality that integral of I S n plus is less than or equal to

integral of I S n plus I require the positivity of the functions.

What is essentially happening is I is a larger interval, but since the values of S n plus are

non-negative this integral can only increase and not decrease. So, this is the crucial place that

actually hinges upon the positivity or rather the non-negativity of the original function F. So,

S n plus generates F restricted to rather S n plus restricted to I 1 generates F restricted to I 1.
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Similarly, S n plus restricted to I 2 generates F restricted to I 2. Now, it is obvious that for

step functions we have this; when you break up the interval of integration for a step function

you get this obvious equality. Integral of I S n plus is just integral of I 1 S n plus plus integral

of I 2 S n plus and when you take limits you get integral of I F is equal to integral of I 1 F

restricted to I 1 plus integral of I 2 F restricted to I 2, ok. So, this completes the proof.

So, more or less, all the basic properties of the Riemann integral are also enjoyed by this

integral on upper functions. As a next step we are going to show in the next video that any

Riemann integrable function is automatically an upper function and the Riemann integral

coincides with the integral we have defined for upper functions. Once we are done with that

we can move on to the definition of the Lebesgue integral.



This is a course on Real Analysis and you have just watched the video on Upper functions

and their integrals.


