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We are now in the final leg of this course on Real Analysis. In this part of the course, we shall

study the Lebesgue integral. The Lebesgue integral behaves very well with respect to limits.

Recall that we have already shown that if a sequence of functions that are Riemann integrable

converge uniformly on an interval, then you can interchange the limit and the integral.

But, this requirement of uniform convergence makes the Riemann integrable a Riemann

integral not so well suited for many many applications in analysis and outside. The Lebesgue

integral remedies this deficiency of the Riemann integral. There are several approaches to the



Lebesgue integral. Henri Lebesgue created the Lebesgue integral using his concept of

Lebesgue measure which was part of his PhD thesis.

Subsequently, there are several other equivalent formulations of the Lebesgue integral that

bypasses measure theory. We shall use one such approach pot popularly attributed to the

mathematician Rees. We shall closely follow the treatment given in Apostol’s Mathematical

Analysis, but before we get ahead with the actual nuts and bolts let me try to motivate how

this Lebesgue integral can be viewed in light of the theory we have developed for norm vector

spaces.

To do that, we will revisit the Riemann integral from the perspective of completion and

extension of linear maps. So, recall that for the Riemann integral the Riemann integral, we

partitioned the interval a, b and considered upper and lower sums.

Then, we sort of refined these partitions further and further, and we said that the Riemann

integral the function is Riemann integrable on the interval a, b if the upper sums and lower

sums can be made as close to each other as you desire by making the mesh of the partitions

suitably small.

Now, we are going to view this Riemann integral in a slightly different way. Let us start with

the step mapping let us start with the step mapping. What is a step mapping? Well, a function

F from a, b to R is said to be a step mapping or function is a step function or map if there is a

partition P of a, b; recall a partition is just a collection of points from the interval a, b you we

usually denote the partition like this a equal to a naught less than a 1 less than a 2 dot dot dot

less than a n and this a n is equal to b.

If there is a partition such that F restricted to the open interval a i, a i plus 1 is constant where

i runs from 0 to n minus 1. So, you can break up the interval a, b into finitely many pieces

such that on each piece the function is constant. Note that the values note that the values at a i

are irrelevant, it could be anything are irrelevant, ok.
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So, for a picture you have let us say this is our interval a, b, then you have this partition. In

each one of these sub pieces this is sort of constant. So, that is what a step function is at these

end points it could be anything, it could take values that are very different at the end points it

really does not matter ok.
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Now, of course, from the theory of Riemann integral that we are now very familiar with, it is

clear that the integral of a to b of this step mapping F is nothing but summation of w i into a i

plus 1 minus a i i runs from 0 to n minus 1 where w i is the value of F restricted to a i comma

a i plus 1.

This is easy to see if you I mean if you are familiar with the Riemann integrable this is rather

trivial. In fact, this also says that the Riemann integral of a step function of course, is the sum

of the areas of the various rectangles that are formed by the values of the function f this is one

rectangle this is another rectangle this is a third rectangle so on and so forth ok signed sum of

course.

So, instead so, let us give this equation a name let us call this star. So, this integral a to b F

being equal to this already presupposes that you are familiar with the Riemann integrable



Riemann integral, but what you can do is you can make this into a definition. That is we can

define we can define we can define integral a to b F by star, right. For a step function we can

define the Riemann integral to be given by this formula. Of course, there is something to

check there is something to check.
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So, that will be the first proposition this is well defined this definition is well defined for step

functions and the proof is rather easy and should be familiar to you. I should be should

remind you of several of the arguments we have done when we studied the Riemann integral

in real analysis one, ok. So, let F from a, b to R be a step function step map.

And, let P subset of a, b be a partition be a partition such that F is constant on the sub

intervals determined by the partition on the sub intervals determined by the partition by the

partition. Now, the standard trick that we are going to use is we have to show I mean what is



the meaning what possible issue could arise in this definition is F is a step function there is no

unique partition P such that F is constant on the sub intervals determined by P. There could be

millions of them, right.

We just know that there is one such partition how do you know that this some star is going to

be the same irrespective of the choice of partition you make. Well, what we are going to do is

suppose we add one point add one point C to this partition to this partition.

Now, I am going to show that when you add this one point the integral is not going to change,

then by an induction argument you can prove that no matter how many points you add the

integral is always going to be the same. Then if you have a step map which is constant on sub

interval determined by another partition Q also then you just take the common refinement and

you are done.

You have shown that the integral defined with respect to this formula for the first partition P

is same as the answer you get when you use the same definition for the partition Q, ok. So,

what happens if you add one point? Well, suppose the original partition was a naught or

rather a equal to a naught less than a 1 less than dot dot dot less than a n equal to b.

Well, let us say between a i and a i plus 1 we add this point C. So, we have a equal to a

naught less than a 1 dot dot dot less than a i we add a C in between here less than a i plus 1

less than dot dot dot less than a n equal to b; in one of the sub intervals we have added a

single point.
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Well, what is star with respect to this new partition what is star evaluate to? Well, if I choose

the value. So, let w i be the value of F restricted to a i comma a i plus 1 then what a star

evaluate to? Well, it is the same as summation let us not write a summation let us just keep it

as w 1 into a 1 minus a naught plus dot dot dot then what will happen is when you reach this

interval a i a i plus 1 the crucial part where a point has been added. In fact, the only place

where something has changed what will happen is you will get two terms.

You will get w i into C minus a i plus w i into a i plus 1 minus C plus w i i plus 1 a i plus 2

minus a i plus dot dot dot w n sorry, w n minus 1 a n minus a n minus 1, ok. So, technically

this should be w naught this should be w naught by our notation ok excellent this is nothing

but summation w i into a i plus 1 minus a i. 



These two terms just combine together and this is just equal to star with respect to the

partition P, ok. So, adding one point to the partition does not change the value of the integral

we have defined for step mappings. By induction by induction and taking common refinement

taking common refinement it is clear that star is well defined. 

I will not belabor this proof anymore, it should be clear to you what is happening and you

have done such proofs quite a lot when you studied the Riemann integral as part of real

analysis one or elsewhere wherever you picked up the Riemann integral from. Excellent, so,

we have shown that this star is a good definition for the Riemann integral for step functions.

Now, here is the crucial point.
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And, this is sort of like an exercise at easy exercise. Denote St a, b to be the collection of step

maps F from closed interval a b to R. Then S t a, b is a normed vector subspace of B a, b R,



that is the set of all bounded functions on the closed interval a, b to the real numbers with sup

norm.

This is a rather trivial exercise. This is a rather trivial exercise. All you have to show is sum

of two step functions. This is a step function a scalar times step function is a step function and

the fact that any step mapping is bounded and all that ok. So, this is a rather trivial exercise.

So, the collection of step mappings is in fact, a normed vector subspace of the set of all

bounded mappings given the sup norm, ok.

Now, another lemma which is almost immediate once you prove this exercise is it will be

rather easy to define I mean easy to prove. So, denote by I a b of F, F in S t a b to be the

integral given by star the integral given by star. Then I a b from St a b to R is a continuous

linear map linear functional that is a bounded linear functional in the terminology that we

have developed in the first part of the course on metric spaces.
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Well, the proof of this is not so hard proof linearity is trivial that is just follows from the

definition and taking refinements linearity of star or linearity of I a b; how did I put it? I a b. I

a b is trivial. As for continuity, well, observe that if supremum of or rather norm F under the

sup norm is some M, then star immediately gives I a b of F is less than or equal to M times b

minus a, ok. So, which immediately proves continuity, which gives continuity, from the

theorems that we have developed about continuity of linear maps on a normed vector space.

So, we have defined an integral not on all continuous functions or all Riemann integrable

functions, but on a very simple set of functions the set of all step mappings, on that we have

defined an integral that obviously, agrees with the classical Riemann integral that we have

defined in real analysis one. But, this I a b is linear on the space of all of space of all step

mappings.
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Well, the next step is the definition let F be an element of St a, b closure. We define I a b of F

to be the value of I a b on a or rather let us let me just state it in a slightly different way.
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Let me define it in a slightly different way. This is a bit complicated. Let the space let us call

it C, at the space C be by definition S t a, b closure ok. Now, C is a closed subspace of the

bounded functions from a, b to R. Since R is complete R is complete I a b extends to be a

continuous linear map continuous linear map denoted again by I a b denoted by I a b again

that is we do not introduce another notation just to burden ourselves.

I a b extends to be a continuous linear map denoted by I a b again, then the definition is I a b

of F is said to be the Cauchy integral of F which is there in St a, b closure elements of this St

a, b closure a, b closure are called regulated maps called regulated maps ok.

Let us take a deep breath. What have we done? Well, defining the Riemann integral as the

area under the curve is rather straightforward and trivial to do for step mappings, there is no

complication that arises. So, we do that that was stage 1. Then we exploit the advanced



machinery of non-vector spaces and linear mappings on them and extensions on them to

immediately extend the definition of that integral to a much larger class of St a, b closure.

Now, it will turn out that every single continuous function is actually there in St a, b closure. I

will not be proving that in this course. You can check Lang’s undergraduate analysis for

details undergraduate analysis for details, since we have already spent the time developing the

Riemann integral in the classical way I will not do it once again using these step mappings

and taking the closure and linear extensions. This is just to prepare ourself for what is about

to come as part of the Lebesgue integral.

So, we using this abstract machinery of linear extension we have managed to get an integral

defined on a substantially good class of functions St a, b closure; it will contain all the

continuous functions for instance. It will also contain plenty of non continuous functions. In

fact, most step mappings are not continuous and what is so special about this approach is

proving the basic properties of the integral for step mappings is rather trivial.

In fact, I just left it as an exercise show that it is linear and all that, it is rather easy to do.

What you can do is exploit this fact that this I a b comes from a linear extension to get many

of the properties of the Riemann integral almost for free. We did quite a bit of hard work

when we proved the basic properties of the Riemann integral, you can sort of get all of those

for almost free if you take this approach.

One disadvantage of this approach is it is quite non-constructive in the sense that you are

appealing to quite an abstract theorem or normed vector spaces to even define the integral I a

b of F. But, nevertheless as a theoretical reformulation of the Riemann integrable; Riemann

integral this is quite useful, and one can justifiably define this integral as the standard integral

and forget about that more technical construction using upper sums and lower sums.

It is purely a matter of popularity the older construction is still more popular, but many people

do believe that this abstract construction is the correct one but, nevertheless leaving aside the

controversial points regarding pedagogy. Coming back to what we are about to do we are



going to be inspired by this approach define the same integral for step functions but this time

take a different sort of limit.

Here we are sort of taking when you take the closure under the sup norm that same as uniform

convergence. So, here we are taking sort of the uniform limit of functions and calling those

the regulated functions. Instead, we are going to consider as different sort of limit and define

a new integral and that new integral will be much more powerful. The collection of all such

integral integrable functions will be a much bigger class and it will behave well with respect

to taking limits, ok.

So, for the interested student you can refer to Lang’s undergraduate analysis for all the details

of how to recover all the basic theorems that we approve for the Riemann integrable Riemann

integral for the Cauchy integral and also C cannot contrast the two approaches. But, that is up

to you, that is not part of the syllabus of this course.

In the next video, we shall talk more about step functions and monotone sequences of step

functions and prove a certain limit theorem for such sequences that will pave the way for

eventually defining the Lebesgue integral, which as I have repeatedly said is a substantially

more powerful integral from the perspective of analysis. This is a course on Real Analysis

and you have just watched the video on the Riemann integral revisited.


