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In this video, we shall see several examples of normed vector spaces. Let us begin by 

taking a very basic example.  

Example 1: ℝ with the inner product  

⟨𝑎, 𝑏⟩ = 𝑎𝑏 

is an inner product and the associated norm is the absolute. This is the simplest and most 

basic example of an inner product space and the associated norm. 

Example 2: It is something that you have explored in great detail, probably in a vector 

calculus course or multivariable calculus course in your more basic courses. Take ℝ! and 

define  

⟨(𝑥", … , 𝑥!), (𝑦", … , 𝑦!)⟩ = -𝑥#𝑦#

!

#$"

. 



This is the standard inner product on ℝ!. The fact that this is an inner product is rather 

easy to see, and you can see that the Euclidean norm and metric arise from this inner 

product. These are all easy checks that I am leaving to you.  

So, these are the standard prototype examples of inner product spaces and norms. These 

are the prototypes on which the more abstract definition that we studied is based.  

 (Refer Slide Time: 03:02) 

 

So, let me just remark that there are several other natural norms on ℝ!. Let me just list two 

of them. And we will sort of explore this in some detail when we come to product metric 

spaces. You can define the 𝑙" norm. This is nothing but the sum of the absolute values of 

the various components. 

‖(𝑥", … , 𝑥!)‖" = |𝑥"| + ⋯+ |𝑥!|. 

 The other one is called the 𝑙 infinity norm on the Euclidean space, denoted like 𝑙%. This 

with an infinity this is nothing but the maximum of the various components 

‖(𝑥", … , 𝑥!)‖% = max{|𝑥"|, … , |𝑥!|}. 

So, check that these are norms. Now both of these norms do not arise from an inner 

product. I will maybe put this as an exercise for you. These both do not arise from an inner 

product; nevertheless, they are natural and interesting norms, and in some context, using 

these norms will make our lives easier.  



So, we will use these as and when it is appropriate. From the perspective of metric spaces, 

all these norms are sort of going to be equivalent in a sense that we shall define a bit later. 

So, from our purposes of studying the topology of these spaces, they will all be identical. 

It does not matter which one of these norms, whether you put these 𝑙" norm or the 𝑙% norm 

or whether you put the norm that we saw before the Euclidean norm, it does not matter. 

All of these are going to be equivalent.  

So, let us move on to the next example,  

Example 3: We denote by 𝑙", all sequences in ℝ such that ∑ |𝑥!|%
!$" < 	∞. In other words, 

this 𝑙" is the collection of all sequences whose corresponding series is absolutely 

convergent. Now it is an easy exercise for you to see that	𝑙"is a vector space with 

component-wise addition, and the definition that we gave will give you a norm. So, the 

definition above gives a norm. These are all easy checks that again, I am going to leave it 

to you. 

(Refer Slide Time: 06:10) 

 

Example 4: This is called 𝑙% and if you have been following the notations that I am giving, 

you can sort of guess what this is going to be. This is again going to be all sequences in ℝ 

that are bounded. Again it is very easy to see that this will be a vector space with 

component-wise addition and component-wise scalar multiplication.  

And what you do is if (𝑥!) ∈ 𝑙% , we define  



‖𝑥!‖%=	max{|𝑥!|: 𝑛 ∈ ℕ}. 

You take the highest absolute value quantity in the sequence. So, since this is bounded, 

such a maximum will exist. To be 100 percent precise, I should not use maximum.  
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I should use supremum because it is quite conceivable that this highest value is not part of 

the sequence. For instance, if you can just take the sequence A1 − "
!
D,  the norm of that 

sequence is 1, and 1 is not an element of the sequence. So, I want you to check the details 

of these examples to make sure that you understand why, in each case, the space under 

consideration is a vector space and why, indeed that it is a norm. 

Now the example 𝐵(𝑋,ℝ) which we have already seen. 

Example 5: 𝐵(𝑋,ℝ), where X is a set, and 𝐵(𝑋,ℝ) is the set of all bounded functions on 

𝑋. This is going to be a vector space under point-wise addition, point-wise addition, and 

point-wise scalar multiplication. That is easy to see. If you recall, we had defined a sup 

norm on this space. Let me recall  

‖𝑓	‖ = 	𝑠𝑢𝑝{	|𝑓(𝑥)|:	𝑥	 ∈ 𝑋}. 

This was the norm of a bounded function defined on the set 𝑋. Now, you can check that, 

indeed, this norm satisfies all the properties of a norm, and therefore, you get a metric that 



we have discussed before. Now one interesting thing is on this space 𝐵(𝑋,ℝ) you can 

multiply two functions. So,  

Exercise: I want you to check that ‖𝑓𝑔‖ ≤  ‖𝑓	‖ × ‖𝑔	‖ and that inequality need not always 

be an equality. Think of an explicit example where this is not going to be an equality.  

Please do this as an interesting and basic exercise. So, again I want you to check example 

5 also in detail. In some sense example, 5 is the most important example from our 

perspective. Now, let me make a general definition that will come again and again in this 

course and elsewhere in topology. 
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Definition: This is the definition of a subspace. Let 𝑋 be a metric space and 𝑌	 ⊆ 𝑋. On 𝑌 

we can define a metric. This is just 𝑑|&×&. You have the function 𝑑 : 𝑋	 × 𝑋	 → ℝ. We can 

restrict it to this product 𝑌 × 𝑌. . The fact that 𝑑|&×& is going to be a metric is obvious. 

Then we say 𝑌 with the metric	𝑑|&×& is a subspace of 𝑋.  

So, this is just there was no need to, I mean, take out time and highlight this as a definition. 

Whenever you have a subset of a metric space, you can make it into a metric space 

naturally by taking the metric in the ambient space 𝑋 and just restricting it to 𝑌. Now, we 

will study all sorts of subspaces in this course, but there are many interesting subspaces of 

just ℝ!. 
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So, let me just highlight a few interesting subspaces of just ℝ!. Take ℝ! or take just ℝ 

and consider ℕ ⊂ ℝ, the natural numbers. Now, you can restrict the metric on ℝ to these 

natural numbers, and you will notice that when you restrict it, this space ℕ behaves very 

similarly. So, ℕ with this metric behaves similarly to ℕ with discrete metric. 

Now, I am not going to make this precise. What I am going to ask you to do is think about 

this and make this precise. What is the meaning of N with this metric that looks very 

similar to the discrete metric? Can you make a more precise statement? I am going to leave 

it to you as an exercise. 
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Now coming back to the general scenario of ℝ!. There are certain very important examples 

of metric subspaces of ℝ! called submanifolds. So, rather than spending an elongated 

amount of time defining what a submanifold is, I will say they are things like if you are 

taking ℝ( then nothing but things like circles and parabolas and ellipses. 

These are things that are smooth curves that are sitting inside ℝ(. Similarly, in a higher 

dimension, all these nice surfaces like spheres and cylinders and the higher dimensional 

analogs of these are all subspaces called submanifolds locally. They will look like 

Euclidean space. 

I am not going to make this precise in this course. On these, you always have a metric 

coming from the subspace coming from the ambient metric on ℝ! you can put a metric on 

the sub-manifolds. Now, these submanifolds are very important, and they are studied in 

differential topology and differential geometry. 

Now, often on these subspaces, the Euclidean metric is not the nicest metric to put on it. I 

will just give one example. Look at 𝑆" ⊆ ℝ, the unit circle. Now, we can define another 

metric on 𝑆" as follows. If 𝑥, 𝑦 ∈ 𝑆" then 𝑑(𝑥, 𝑦) is the length of the shortest arc between 

𝑥 and 𝑦. There are two arcs on the circle that join 𝑥 and 𝑦. Look at the length of the shorter 

one. You can spend some time and show that this definition will give you an alternative 

metric on the circle that is different from the one that comes from the ambient Euclidean 



space. Now, since we have dealt with subspaces, now when you make statements like let 

us say suppose I say I have this metric space 𝑋 and I have a subspace 𝑌	 ⊆ 𝑋. 
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Now, if I have a set 𝐺	 ⊆ 𝑌 and suppose I say 𝐺 is open, what does this even mean? What 

does this even mean? This statement 𝐺 is open could mean two things. Does it mean that 

𝐺 is open in 𝑌, or does it mean that 𝐺 is open in 𝑋? What I mean by that is, do I view 𝐺 as 

a subset of 𝑌 with the subspace metric, or do I view 𝐺 as a subspace of 𝑋; how do I view 

it? What is the statement open mean now? 

To make this point that this is not a trivial statement. Observe that this 𝑌 if I treat it as a 

metric space in of itself, this Y is always. So, if this is somewhat tricky, it is not always 

true that if you have 𝐺 which is open when you treat it as a subset of 𝑌, it may not be open 

when you treat it as a subset of 𝑋. It depends on what is the parent metric space we are 

going to consider.  

So, whenever you have this nested subspace as 𝑌	 ⊆ 𝑋. So, you have potential ambiguity 

when we say 𝐺 is open; we always mean in the parent metric space; that is 𝑋. So, whenever 

we just make a blanket statement, you look at the largest metric space we are considering, 

and it is open in that is what it means. 

Now, if you want to say 𝐺 considered as a subset of 𝑌. You want to check whether it is an 

open set when you treat it as a subset of 𝑌 then we will say 𝐺 is open in 𝑌. So, if you want 



to distinguish that we are treating 𝑌 as the metric space under which we are analyzing 𝐺, 

we will be explicit, and we will say 𝐺 is open in 𝑌.  

Similarly, the same remarks apply for closed sets, so similar remarks for closed sets. Do 

not make this mistake of thinking that open and close are absolute concepts. Open and 

closed always depend on which metric space we are considering. For that given situation, 

when there are multiple metric spaces, be very careful and think which metric space we 

are trying to make the statement under. 

(Refer Slide Time: 19:35) 

 

So, in this context, we have this nice exercise.  

Exercise: Suppose 𝑋 is a metric space, 𝑌	 ⊆ 𝑋 is a subspace. So, we treat this subset as a 

metric space with the metric induced by the ambient metric space 𝑋. Then, a set  𝐺	 ⊆ 𝑋 

is open in 𝑌 if and only if we can find 𝑈	 ⊆ 𝑋 open with 𝐺 = 𝑈	 ∩ 𝑌.  

So, intentionally I am not going to clarify the meanings of the occurrences of the word 

open. I want you to figure out which open each occurrence of the term open what it means. 

So, with that being said, let us move to the next example, 

Example: We already considered the space 𝐵(𝑋,ℝ),	when 𝑋 is any set. So, now, let 𝑋 be 

a metric space. There is absolutely nothing stopping us from considering 𝐵(𝑋,ℝ)	again 

right. Just because 𝑋 is a metric space does not mean that we cannot talk about 𝐵(𝑋,ℝ). 

𝑋 just happens to have more structure than required. So, 𝐵(𝑋,ℝ) with this sup, a metric 



space. Now, that is not the interesting bit. Consider 𝐵C(𝑋,ℝ). It is bounded and continuous 

functions. That is one of the advantages of putting 𝑋 as a metric space. We can talk about 

bounded and continuous functions on 𝑋. This 𝐵C(𝑋,ℝ) is, of course, a subspace of 

𝐵(𝑋,ℝ). Not only is it going to be a subspace of 𝐵(𝑋,ℝ),  this is complete, which we will 

prove soon enough. This is again one of the most important examples of metric spaces and 

normed vector spaces. 
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So, let me just make a definition in this context. 

Definition: A complete normed vector space is called a Banach space. 
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ℝ is obviously, a Banach space.  

Exercise: Show that ℝ! with Euclidean metric is a Banach space. 

This is a rather important exercise but not very challenging. Now, we will generalize this 

last example a bit further, and this will be the final example of normed vector spaces that 

we are going to study.  

Example: Let 𝑋 be a metric space and 𝑌 be a Banach space. So, the co-domain is no longer 

real numbers, but it is a Banach space. Consider 𝐵(𝑋, 𝑌) the collection of all bounded 

functions from 𝑋 to 𝑌. Because 𝑌 is a Banach space, there is a metric. You can talk about 

a bounded function. This just means that the range of a function is contained in some open 

ball centered at the origin of the space 𝑌. That is what bounded function means. 

So, you can check that this is a normed vector space. First, check that it is a vector space 

and it is also a normed vector space with the sup norm and the sup norm of a function 𝑓 

‖𝑓	‖ = 	𝑠𝑢𝑝{	|𝑓(𝑥)|:	𝑥	 ∈ 𝑋}. 

You take all the possible values of 𝑓 evaluated at various points of 𝑋. Because this is 

bounded, this entire quantity is going to be a finite number. You can check again that this 

is going to be a norm. These are all trivial checks; that is why I am going to leave it to you. 



Note that because 𝑋 is a metric space and 𝑌 is a Banach space; therefore, 𝑌 is also a metric 

space. 
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We can also talk about; we can also talk about continuous functions from 𝑋 to 𝑌. We can 

also talk about the space of continuous functions from 𝑋 to 𝑌, but because 𝑋 is not is just 

a general metric space, we will later study compactness. If 𝑋 is compact, then this also 

going to be a normed vector space with sup norm. 

It is going to be a subspace of 𝐵(𝑋, 𝑌) because continuous functions on compact sets will 

turn out to be bounded just as we have seen for the real numbers. However, if 𝑋 is just a 

general metric space, there is no reason to believe that a continuous function will be 

bounded.  

So, because of that, we have to consider 𝐵𝐶(𝑋, 𝑌). Again 𝐵𝐶(𝑋, 𝑌) is just 𝐶(𝑋, 𝑌) ∩ 

𝐵(𝑋, 𝑌) and exactly as before, we see that this is also complete. Later towards the end of 

this set of videos on metric spaces, we will study the compact subsets of 𝐵𝐶(𝑋, 𝑌). That 

is the famous Ascoli-Arzela theorem. 

So, with this collection of examples of normed vector spaces, I leave you with many minor 

details to check. I urge you to do it at least once in your life because these details might 

seem irrelevant to you, but trust me and take it from me that you must check it once. This 



is a course on Real analysis, and you have just watched the video on examples of Normed 

Vector Spaces. 

 


