
Real Analysis II 
Prof. Jaikrishnan J 

Department of Mathematics 
Indian Institute of Technology, Palakkad 

 
Lecture - 1.4 

Loads of Definitions! 
 

(Refer Slide Time: 00:23) 

 

With the basic examples of metric spaces now well understood, let us proceed and give 

plenty of definitions. I urge you to connect each concept introduced in this module with 

the corresponding concept defined for the real numbers in the earlier chapter entitled a 

Taste of Topology. So, the first definition is going to be that of a sequence.  

Definition: Let 𝑋 be a metric space. A sequence in 𝑋 is nothing but a function 𝑓:ℕ →

𝑋. As usual, we shall use the notations (𝑥!)!∈ℕ or  {𝑥!}!∈ℕ or just plain 𝑥! to denote 

sequences.  

Now, let us come to the most important definition of convergence. Again, it will be no 

surprise because we have already seen and spent considerable time digesting this 

definition.  

Definition: Let 𝑥! be a sequence in the metric space 𝑋. We say 𝑥!  converges to 𝑥$, 

where 𝑥$ 	 ∈ 𝑋, if for each 𝜖 > 	0, we can find N% ∈ ℕ such that 



if	𝑛 > 𝑁% ,		then	𝑑(𝑥!, 𝑥$) < 𝜖. 

This definition is saying that whenever this 𝑛 is chosen suitably large, then the distance 

between 𝑥! and 𝑥$ can be made arbitrarily small.  

The definition is exactly analogous to what we have already seen, digested, and 

assimilated in our bloodstream, the earlier concept of convergence that we saw for real 

numbers. 
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Now, let me just remark.  

Remark: We will continue to employ descriptive language for limits of sequences.  

What do I mean by continuing to employ descriptive language for limits? Well, I urge 

you to look through the corresponding section in the chapter on sequences and series 

that we saw before in real analysis I. But let me just recall one major phrase that comes 

up repeatedly that it is worth rewriting once more, even if it is going to be a repetition. 

Remark: We recall that the phrase 𝑃(𝑛) is true for sufficiently large n is just a shortcut 

for saying ∃	𝑁 such that if 𝑛 > 	𝑁 then 𝑃(𝑛) is true. So, the tedious and complicated 

expression is shortened to saying 𝑃(𝑛) is true for sufficiently large 𝑛. So, the definition 

of convergence just reads 𝑥! converges to 𝑥 if if for all 𝜖 > 0,	d(𝑥!, 𝑥) < 	𝜖 for suitably 

large 𝑛.  



So, I urge you to go back to the section on sequences and series in the chapter on 

topology on real numbers and revise all the basic concepts that we have introduced. It 

is going to be used without further description in what follows.  

Now, what we are going to do is study some more definitions. Still, it might be 

worthwhile to pause and work out a couple of exercises to make sure that you 

understand what exactly is happening in this more abstract and general setting of metric 

space. 

Again, to ground our knowledge, it might be a good idea to look back in the 

corresponding chapter on real numbers whenever a new definition is introduced. But of 

course, seeing that concept in real numbers will not enable you to understand and 

appreciate this more general theory fully. So, we should look through some examples 

that are far away from real numbers so that we have a good understanding of these 

definitions. 

So, let me give you an exercise that will cement your understanding of sequences and 

convergence.  

Exercise: Let 𝑋 be a set with the discrete metric; that means 𝑋 is a trivial metric space. 

When does the sequence 𝑥! ∈ 𝑋 converge? 

Think about a discrete metric space and consider a sequence 𝑥!. In this discrete metric 

space, can you precisely describe when the sequence will actually converge? Is there 

any easy way to just look at the sequence and tell whether it converges or not? Solve 

this exercise. 
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Next, another exercise,  

Exercise: Suppose we consider the metric space 𝐵([0,1], ℝ). So, this is the metric space 

of bounded functions from [0, 1] to ℝ with the sup norm metric. When does a sequence, 

when does a sequence f! ∈ 𝑋 converge to 𝑓	 ∈ 𝑋? 

So, please solve these two exercises. It will give you a grounding in the notion of 

convergence in this more general setting of metric spaces. Onwards definition and this 

is an important definition of continuity, but as we have digested this definition, it is not 

going to prove that much of a challenge.  

Definition: Let 𝑋 and 𝑌 be metric spaces with a function 𝑓 ∶ 	𝑋	 → 𝑌. We say that 𝑓 is 

continuous, if for each sequence 𝑥! ∈ 𝑋 such that 𝑥! → 𝑥 ∈ 𝑋, we have 𝑓(𝑥!) → 𝑓(𝑥) ∈

𝑌.  

So, a function from a metric space X to a metric space Y is said to be continuous, if 

whatever sequence 𝑥! you take that converges to some 𝑥 ∈ 𝑋, we have that the image 

sequence 𝑓(𝑥!) converges to the limit 𝑓(𝑥). If, you recall this was one of the 

characterizations of continuity that we have already seen for continuous functions from 

a subset of real numbers to real numbers. 



We have already seen several characterizations of continuity, and this is one of them 

ok. In a later module, we will characterize continuity in terms of open sets as well. So, 

for the time being, you can solve one exercise;  

Exercise: Formulate the definition of continuity at a point.  

I will leave it to you to figure out what exactly this question is asking you to do. The 

moment you figure out what this question is asking you to do, actually solving the 

exercise will be over. So, I do not want to spoil the fun, so please think about this and 

do it. Some more definitions. 
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So, as I mentioned, this will be a long list of definitions, most of which you have already 

seen in the chapter on the topology of real numbers.  

Definition: A sequence 𝑥! in a metric space 𝑋, X is said to be Cauchy if, for each 𝜖 >

	0, we can find 𝑁% ∈ 	ℕ, such that if 𝑛,𝑚	 ≥ 	𝑁%, we have 𝑑(𝑥!, 𝑥&) < 𝜖.  

So, this just says that the distance between terms of the sequence becomes arbitrarily 

small if 𝑛,𝑚 are sufficiently far. So, intuitively a Cauchy sequence is one in which the 

terms of the sequence start getting closer and closer to each other as we move towards 

the tail of the sequence. The same proof that you have seen will show that convergence 

sequences or Cauchy, which I am going to leave as an exercise;  



Exercise: Convergence sequences or Cauchy.  

The exact same proof will work word for word, but one interesting remark that can be 

made is the converse is not true. The converse is not always true. It is not true that if 

you have a Cauchy sequence in a metric space, then it converges; that is not necessarily 

true. A simple example should clarify what is happening.  

Example: Just look at the set (𝑎, 𝑏) ⊆ ℝ. Now, what we can do is we can treat (𝑎, 𝑏) as 

a metric space; by considering the same absolute value function as the metric on (𝑎, 𝑏). 

Then, it will be clear to you that the sequence 𝑎 + '
!
,  n suitably large is Cauchy. In fact, 

𝑎 + '
!
 must converge to 𝑎, but if you notice this 𝑎 is not actually an element of (𝑎, 𝑏). It 

is an element of ℝ, but our metric space itself does not have the point 𝑎. So, this is 

saying that you can have a Cauchy sequence that does not converge to any point in the 

metric space. 
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So, let me give one more definition in this regard.  

Definition: A metric space 𝑋 is said to be complete if any Cauchy sequence in 𝑋 

converges.  

So, as you can probably guess, we have already proved this ℝ with its usual absolute 

value as the metric is complete. This notion of completeness that we have just defined 



is equivalent to the completeness axiom that we spent a considerable amount of time 

studying in the context of ordered fields. So, this is just a remark that is not central to 

this course. Still, I just want to make that this notion of completeness, which is a sort of 

topological completeness, is equivalent to completeness in the sense of an ordered field 

that we define.  

So, let us come back to this notion of completeness. ℝ is a complete metric space. Work 

out these two exercises to understand this notion of completeness in greater depth.  

Exercise: What are the Cauchy sequences in discrete metric space?  

Exercise: Can a discrete metric space be complete?  

Solve these two exercises then you will understand what exactly is going on with 

completeness. Onwards and forward another definition. 
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Definition: Let 𝑋 be a metric space and 𝐴	 ⊆ 𝑋. We define  

diam(𝐴) = sup{𝑑(𝑥, 𝑦): 𝑥, 𝑦 ∈ 𝐴}. 

Look at all pairs of points that come from 𝐴, look at the distance between the pair of 

points and take the supremum. Now, the second part of the definition is more important. 



We say the set 𝐴 is bounded if the diameter of 𝐴 is finite. So, whenever the diameter of 

a set is finite, we say that the set A is a bounded set.  

Now, again another exercise for you. A plenty of things in this particular module will 

be left as exercise because, as I have mentioned repeatedly before, much of this set of 

definitions and basic theorems are just obtained by changing notation in the earlier 

chapter on the topology of real numbers. 

Exercise: Any Cauchy sequence is bounded.  

So, let me give one more definition and related to this notion of diameter definition.  

Definition: Let 𝑋 be a metric space and take a point 𝑥 in 𝑋. We define the open ball of 

radius 𝑟	 > 	0, centered at 𝑥 to be,  

𝐵(𝑥, 𝑟) = {𝑦 ∈ 𝑋: 𝑑(𝑥, 𝑦) < 𝑟}. 

The definition is completely self-explanatory, and again, it is more or less exactly the 

same as the definition of open balls that we have already seen for the real numbers. 
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One exercise in this context is the following.  



Exercise: Show that open balls are always bounded. It is rather a trivial exercise. You 

can even figure out what the bound is. But, show by example that the diameter of an 

open ball is not always twice the radius. 

So, you will have to cook up a metric space in which it does not hold true that there is 

a ball, then automatically, the diameter of that ball is twice the radius of that ball. That 

is not going to happen in this particular metric space. Once we have defined open balls, 

the next definition should be fairly clear to you. I expect you to have guessed it.  

Definition: Let 𝑋 be a metric space. Let 𝑆	 ⊆  𝑋. We say 𝑥	 ∈ 𝑆 is an interior if 𝐵(𝑥, 𝑟) 

⊆ 𝑆 for some 𝑟	 > 	0.  

And, the next definition is also going to be utterly self-explanatory.  

Definition: Let 𝑈 ⊆ 𝑋. We say 𝑈 is open if each point of U is an interior point. 
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So far, so good all the definitions, as I had promised, are just changes in the earlier 

definitions and more to follow, which you should have anticipated again.  

Definition: Let 𝑆	 ⊆ 𝑋. We say 𝑥$ in 𝑆 is an adherent point of 𝑆, if we can find a 

sequence 𝑥!, such that 𝑥! ∈ 𝑆 and 𝑥! converges to 𝑥$. If, furthermore, we can choose 

𝑥! such that 𝑥!’s are all distinct. This just means that there is no repetition in the 

sequence. Then we say 𝑥$ is a limit point. An adherent point that is not a limit point is 



called an isolated point. An adherent point that is not a limit point is called an isolated 

point. And, the last definition is the closure of 𝑆, 𝑆̅ is the set of all adherent points of 𝑆.  

So, all these definitions are word for word the same. If you are getting bored, do not 

worry. We are just a few more definitions away, and then we can move onto more 

interesting material. 
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Yet another definition, this time that of a closed set.  

Definition: A set 𝐹	 ⊆ 𝑋 is said to be closed if it contains all its adherent points.  

So, just as a remark, I am not going to write this down. In the literature, what we call 

limit points are often called accumulation points or cluster points. And, again the 

terminology is not consistent across textbooks. What we have called an adherent point 

some authors call a limit point. So, it is a bit confusing. I strongly recommend that 

whenever you pick up a textbook that uses these concepts, always check for when the 

definition of the author what exactly the author means by a limit point or adherent point 

or accumulation point or cluster point. It is always a good idea to double-check. 

The last few definitions in this extended module of definitions.  

Definition: A subset 𝑆 ⊆ 𝑋 is said to be dense if 𝑆̅  = 	𝑋.  



This is probably the only definition that is somewhat new. We have already seen it in 

some context, but this is probably the only definition, and this one and the next one to 

follow are the only definitions that are genuinely new. 

Definition: A metric space is said to be separable if it has a countable dense subset.  

So, a metric space is separable if you can find a subset that is both dense and countable. 

We already know that ℚ[ = ℝ , i.e., the closure of the rational numbers is the real 

numbers, and ℚ is also countable, which we saw long ago when we were still in 

kindergarten. So, we have seen that ℚ is also countable. Therefore, ℝ is separable. 

Now, the last definition in this module, you must have seen isomorphic vector spaces. 

You must have also proved that any finite-dimensional vector space is isomorphic to 

ℝ!. This means that this isomorphism sort of acts like a dictionary that translates the 

elements in one vector space to that of the isomorphic vector space. So, isomorphic 

vector spaces are essentially the same vector space up to a renaming, and this renaming 

can be achieved by using an isomorphism. When are two metric spaces the same? Well, 

we have the following definition. 
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Definition: Let (𝑋, 𝑑) and (𝑌, 𝑑’) be two metric spaces. A map 𝑓 ∶ 	𝑋	 → 𝑌 is said to be 

an isometry if for all pairs 𝑥	, 𝑦	 ∈ 𝑋, 



𝑑(𝑥, 𝑦) = 𝑑’]𝑓(𝑥), 𝑓(𝑦)^. 

So, from the perspective of distances, the distance between a pair of points in the space 

X is exactly equal to the distance between the image points 𝑓(𝑥) and 𝑓(𝑦). Therefore, 

whatever holds for a pair of points in the space 𝑋, the same property will hold for the 

pair of points 𝑓(𝑥) and 𝑓(𝑦) in the space 𝑌.  

Definition: Two metric spaces are isometric if we can find a bijective isometry between 

them. 

So, I am going to leave you with an exercise. 

Exercise: Let 𝑋 and 𝑌 are metric spaces.  If 𝑓 ∶ 	𝑋	 → 𝑌 is a bijective isometry, show 

that 𝑓 and 𝑓(' are both continuous. 

So, this concludes an excessively long list of definitions. I thank you for your patience. 

This is a course on Real Analysis, and you have just watched the module entitle Loads 

of Definitions. 

 


