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In this video, we are going to learn how to compute the derivative directly by our knowledge

of one variable calculus. This will be facilitated by the notion of directional derivatives and

partial derivatives. So, as usual the setting is F is from U to R, U is subset of R n open. We

are in this setting.

Suppose, we know that F is differentiable, F is differentiable, at this particular point x in U,

ok. Now, fix a vector, fix V in R n and fix this vector to be a nonzero vector, fix a nonzero



vector. Then, we know that we can do F of x plus tv minus F of x and this will be equal to DF

x tv plus E of tv. 

This equation will be valid whenever t greater than 0 is suitably small, ok. In fact, this will

also work when t is less than 0 and is suitably small, ok. All you are saying is that the vector

tv is sufficiently small that x plus tv is in the domain of both the x plus tv is in the domain of

U, ok.

Now, we divide by t on both sides. So, what you get is F of x plus t v minus F of x by t is

equal to DF x V plus E of tv by t. Note, I have gotten rid of that t this t I have gotten rid of

that is because DF x tv is just D t times DF x v because DF x is a linear transformation, it is a

linear functional.

Now, observe that as t goes to 0, as t goes to 0 E of t v, E of t v by t goes to 0. Well, to see

this all you have to do is you will just have to multiply and divide by norm v, by norm v, ok.

So, as t goes to 0, this will go to 0, of course, you might object that there should actually be a

modulus of t here, but that really does not matter, that is just going to change the sign. 

And as we are claiming that this term goes to 0, it really does not matter whether there is a

plus t or a minus t in the denominator, ok. So, writing E of t v by t as E of t v norm v divided

by t norm v, we see that this term E of t v by t goes to 0 as t goes to 0. What is the net upshot?

Well, the net upshot is the following.
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It is that limit, t going to 0, F of x plus p v minus F of x by t, this is equal to DF x v, ok. Now,

intuitively what this expression F of x plus tv minus F of x by t limit t going to 0, what this

set gives? This gives the rate of change, so this is the rate of change, rate of change of F at x

in the direction in the direction or along V, ok. So, essentially what we are doing is we are

just considering a line passing through this point x along the direction V that is what this x

plus tv is supposed to denote. And we are restricting F to that line. 

So, F in some sense becomes a one variable function and we are differentiating F in the usual

sense that is what this is doing. And the net thing that you get limit t going to 0, we will

measure the rate of change in that particular direction.



The new thing that we have got is the fact that if F is differentiable at the point x, this is in

fact, equal to DF x v. So, the derivative linear functional DF x allows you to compute the rate

of change in each direction, ok. So, we formally make this into a definition now, definition.

So, let V not equal to 0, be a vector in R n, vector in R n. We define the directional derivative

of F along V at x to be the limit t going to 0 F of x plus t V minus F of x divided by t. Of

course, provided the limit exists, provided the limit exists, ok. So, as I have said we will

consider V not equal to 0, ok.
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Now, for what do you say; for notational convenience; by the way I did not introduce the

notation this directional derivative is denoted by D V of F of x, ok. Directional derivative of F

at x along V is denoted dv F of x, ok. So, for notational convenience we define D 0 F of x to



be just 0. So, the directional derivative along 0 is defined to be 0 just by convention, just for it

is a formal definition, ok.

In particular, if V is e i that is one of the standard basis vectors, one of the standard basis

vectors, we define the i-th partial derivative D i, we do not put the e i for convenience D i of F

of x is just as you can guess, F of limit at t going to 0, F of x plus t e i minus F of x by t, ok.

So, the i-th partial derivative is actually nothing, but D e i of F of x, ok. So, this is a specific

case of the directional derivative, ok.

Now, I am going to assume that you have already studied basic multivariable calculus in your

first year of BSc or whichever course BTech or whichever course you are taking. I am going

to assume that you have already studied taking partial derivatives and directional derivatives. 

Now, other commonly used notations for the partial derivatives include things like del F by

del x i, ok or in the case of just 3 variables del F by del x or del F by del y, del F by del z, I am

sure you have seen such notations and also del i. These are various notations that are used by

various authors to denote the partial derivatives.

Now, the partial derivatives are almost exactly the same concept as one variable

differentiation. To compute the partial derivative at the point x 1 to x n, you just fix all the

variables.
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So, suppose you want to compute let us say D 1 of F at the point x, what you do is you just

consider the map, you just consider F of. So, let me just erase this.
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To compute this just consider t going to F of t, x 2, x 3, dot dot dot x n.
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Actually, it should not be considered F of x 1 plus t consider the map F of x 1 plus t x 2 dot

dot x n, where this x is equal to x 1 to x n. So, fix the values x 1 to x n and substitute it

substitute x 1 plus t dot dot dot x n into the expression, you will get a function of t, right, you

will get a function of t. So, this function of t you just differentiate it with respect to t, just the

way you would do if you are given a one variable function, ok.

So, the derivative in this scenario is exactly the same as one variable differentiation. You just

treat all the other variables as constant. Just the variable that you are interested in just plug in

x 1 plus t get an expression of t and differentiate as usual, ok.
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Now, what we have concluded is that if F is differentiable at x; is differentiable at x all

directional derivatives exist, all directional derivatives exist that was the motivation before I

defined the directional derivative. And in fact, we have D V of F x is just DF x acting on the

vector V, ok.

Now, the LHS as you notice is a number and the RHS is a linear functional acting on V that

will also give a number. So, this actually makes sense. Now, suppose we know that the RHS

always exists that is directional derivatives we are not assuming sorry about that. 

Suppose, we assume that the LHS, suppose we assume that the LHS always exists that is

directional derivatives along all directions, suppose we assume that it exists, then does it



mean that the RHS DF x which is what we are interested in does it mean that it exists? Well,

let us think about this question for a moment.

Notice that the right hand side allows you to give an expression for DF x. If we put the

standard basis, the standard basis on R n and the basis and the basis just set with 1, this is just

one element. 

Just set with one as a basis for R, then DF x in matrix representation in matrix representation,

how do you find out the matrix representation of a linear map? Well, you act the linear map

on the basis vectors and then just put the elements the what the output vectors write down in

the basis for the codomain and put them as the columns. So, immediately you will see that the

matrix representation is just D 1 F x, D 2 F x dot dot dot D n F x. This is a row matrix

consisting of the partial derivatives.

So, what this is saying is if F is differentiable we have a nice expression D 1 F x, D 2 F x, D n

F x, ok. So, this prompts the definition of the gradient which is one of the central topics of

this video.
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So, definition; this is the definition of the gradient. Let F from U to R be a function such that

all partial derivatives, all partial derivatives exist at x in U. We define the gradient. Nabla,

this is read nabla or just grad F x is by definition equal to this vector D 1 F x comma D 2 F x

comma dot dot dot D n F x, ok.

Now, rephrasing this expression in this slide that D V F x is DF x V, we can write that in

terms of the gradient as well.
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So, previously we have seen previously we have seen; we have seen that D V F x is nothing

but DF x v, but this expression that we have seen DF x in its matrix form is just going to be

the row matrix D 1 F x dot, dot, dot D n F x. 

So, this is same as the gradient of F x dot product, the standard dot product, the standard inner

product on R n dot V, ok. So, we have several ways of writing down the directional derivative

along V of the function F at x provided F is differentiable.

Now, the natural question arises. Suppose, I know suppose I know the partial derivatives exist

at the point x, then does that mean that this D 1 F x, D 2 F x dot dot dot D n F x, that row

matrix, does that mean that this row matrix is nothing, but the derivative of F at x? No, we

have a counter example, ok. 
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Consider, F of x to be equal to x plus y if either x equal to 0 or y equal to 0, ok and 1

otherwise. So, this is a rather simple function of two variables. So, this is a function F from R

2 to R, ok.
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Now, you can easily compute that D 1 F of 0 equal to D 2 F of 0 is equal to 0. Why is this the

case? Because you will fix the second variable in the first case, second variable to be 0, so y

is going to be 0, so the function F is 0. Now, when you differentiate it you are just going to

differentiate the constant function 0, so you will get 0.

Now, let us compute D 1 comma 1 of F at 0. This just means taking the directional derivative

along the vector 1 comma 1, ok. So, by definition this is just going to be limit F of x plus t 1

comma 1 or rather F of x, y sorry this is going to be F of x plus t comma y plus t minus F of x,

y by t, right. Why x plus t comma y plus t? Because the vector v we have taken is 1 comma 1.

Of course, the point we have taken is 0, so this just is nothing, but I have to write limit t going

to 0 of course. So, this is limit t going to 0 of F of t, t by t because F of 0, 0, when you



substitute 0 comma 0 for x, y is 0. This is just 1 by t right. So, the limit does not even exist, of

course, limit p going to 0.

So, when you take the directional derivative along the direction 1 comma 1, then the

directional derivative does not exist in this direction at x comma y equal to 0 comma 0, ok.
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In fact, the same argument shows, in fact, directional derivatives do not exist for any v 1

comma v 2 if both v 1 and v 2 are nonzero, if v 1 comma v 2 are both not 0. Then, that

directional derivative along that vector is non-existent the same argument will work.

So, what this shows is that partial derivatives can exist, derivatives can exist without most

directional derivatives existed, ok. But from what we have seen if the function F is

differentiable then all directional derivatives exist, right. 



So, just the mere existence of partial derivatives do not guarantee that the gradient is going to

give you the derivative by taking a dot product, ok. You might think, ok this is sad, but why

do you assume only partial derivatives exist.

So, counter example 2 is going to say even if you assume all partial derivatives exist, it need

not be the case that F is differentiable. So, again consider F from R 2 to R given by F of x, y

is equal to x, y squared divided by x squared plus y power 4, this is when x is not equal to 0,

when x is not equal to 0, and 0, when x equal to 0, ok.

Now, this function looks rather complicated. So, I have just plotted this on wolfram alpha just

the part x, y squared plus x squared plus y power 4, I asked wolfram alpha to plot it and it

gave me something like this.
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As you can see from this picture, there seems to be some weirdness happening at the origin. It

seems to be taking different values at the origin depending on which direction you approach

from.

So, this picture sort of suggests that F is not even continuous at 0, ok. So, that is what we are

going to be showing now. We are going to show that F is not continuous at 0, but

nevertheless all directional derivatives exist. So, F cannot be differentiable because a

differentiable function is always continuous, ok. So, let us just first prove that all directional

derivatives exist at the origin.
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So, let v 1 comma v 2 be a vector such that. So, let this not be 0 such that v 1 equal to 0, such

that v 1 equal to 0, ok. Now, you can immediately see that in this scenario D V F of 0 is

nothing but 0, ok. Now, if v 1 is not 0, if v 1 is not 0, we can compute F of tv 1 comma tv 2



by t, this is what we want, this is the this is going to give you the expression for the

derivative, directional derivative at the origin in the direction v 1, v 2. 

When you substitute you will get t cube v 1 v 2 divided by t cube into v 1 squared plus t

squared v 2 power 4 which is nothing but v 1, v 2 divided by v 1 squared plus v 2 power 4,

ok. So, this computation is valid whenever v 1 is not 0. In fact, it is valid throughout, but the

interesting case is when v 1 is not equal to 0. 

If v 2 is not equal to 0, if v 2 it is not equal to 0, it follows that this expression above if this

expression above gives you a D V F x, follows that dv F x is just this, right. And of course, if

v 2 is 0, just like the case before D V F at 0 is just 0. So. In fact, I could have just not

complicated by taking v 1 not equal to 0, v 2 not equal to 0 and all that first wrote down this

expression and say that this expression is valid if both v 1 and v 2 are nonzero or if at least

one of v 1 or v 2 is not 0, ok. 

So, the net upshot is irrespective of my clumsiness. The net upshot is the directional

derivatives at the origin exist. But F is not even continuous at 0. How do you see that? Well,

consider the sequence z n to be equal to y n squared comma y n and y n going to 0.

So, you are approaching, you are approaching the origin via this parabola y n squared comma

y n, ok. Substituting in that expression for F we will get y n power 4 divided by y n power 4

plus y n power 4 which is just half, ok. So, when you approach along this parabola y n

squared comma y n you get half, but F of 0 comma 0 is equal to 0 because we had defined F

to be 0 whenever x is 0, ok. 

So, this shows that F is not continuous at the origin and therefore, F cannot be differentiable

at the point x, at the point 0, ok. So, this shows that the directional derivatives existing, all

directional derivatives existing does not guarantee the existence of the derivative, ok. Now,

the reason for this is the following. All we know, from the existence of the directional

derivative is that along each direction the function behaves reasonably well because the

derivative exists.



However, the definition of differentiability requires the existence of a good linear

approximation irrespective of the direction, ok. So, this linear approximation in some sense

does not depend on the particular direction of approach. You have sort of a uniform

expression that allows you to approximate the function F. So, intuitively the notion of the

derivative existing is much stronger than good behavior in each direction. And this is

captured in this example.

Nevertheless, a minor twist can make the existence of the derivative guaranteed. What is that

minor twist? You just have to assume that the partial derivatives not only exist, but they are

continuous. Then, it will turn out that F is differentiable, that is the content of the next

theorem, ok.
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Suppose, all partial derivatives, all partial derivatives of F exist and are continuous in U, ok.

So, we are assuming all partial derivatives of F x exist at all points of U and the partial

derivatives that is these D i F they are all continuous, continuous in U. Note, D i F would also

be a function from U to R, taking partial derivatives gives you back a function from U to R,

then F is differentiable in U, F is differentiable in U, ok.

The proof is rather nice it involves a clever telescoping type thing proof. So, fix x in U and let

B x, r; B fully contained in U, choose an open ball that is fully contained in U, ok. Now, this

ball I am just going to call it B, ok. Just a moment. I made a slight error. So, let B x, r be in U

and let B be equal to B 0 r not B x, r. 

You will understand in a moment why I am making this change, ok. Now, if h is in B then x

plus h is an element of B x, r which is contained in U that is the reason why I defined this B

this way, so that I get I am guaranteed that x plus h is an element of B x, r which is in fact, a

subset of U. So, x plus h is an element of u.

So, what do we want to investigate? We want to investigate F of x 1 plus h 1, x 2 plus h 2

comma dot dot x n plus h n and approximate it using some linear map and of course, I have to

subtract F of x 1 to x n, I have to approximate it by a linear map. Of course, x is x 1 to x n,

and h is h 1 to h n, ok. Our goal is to get a nice approximation for this difference, ok.

Now, here is the trick. I am going to write this difference as a telescoping sum. So, that is

why you would need actually that F is partial derivatives of F exists throughout U. In fact, you

could have just assumed exist in some open set that contains x and get a local conclusion that

F is differentiable at x, but I prefer to make this more what do you say simpler statement, but

less general, ok.
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So, what you do is you write this as F of x 1 plus h 1 comma x n plus h n minus F of x 1

comma x 2 plus h 2 comma dot dot dot x n plus h n, ok. You have subtracted something, so

you will have to add back something. So, you add back the same thing, F of x 1 comma F of x

1 comma x 2 plus h 2 comma dot dot dot x n plus h n, ok. Now, subtract F of x 1 x 2 comma

x 3 plus h 3 comma dot dot dot x n plus h n.

So, you have subtracted one term, now you have to add it back again, so you keep going like

this. Finally, you will get F of x 1 x 2 dot dot dot x n minus 1 comma x n plus h n minus F of

x 1 to x n, ok. So, we have just, there is just going to be cancellation. So, this term gets

cancelled with this term, this term will get cancelled with whatever term was supposed to be

there within these dots. So, finally, you will be left only with this minus this, ok.



Now, what we are going to do is we apply the mean value theorem to each such pair, ok. We

apply the mean value theorem to each such pair, observing that in this difference only one

variable is changing. So, we can apply the mean value theorem.
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We apply the mean value theorem, we apply the mean value theorem, value theorem to each

pair to each pair to conclude there is a point there is a point or rather there is a number, there

is a number C i in between x i and x i plus h. 

There is a number C i in between x i and x i plus h, such that this telescoping sum just

becomes h 1 D 1 F of C 1 comma x 2 plus h 2 comma dot dot dot x n plus h n, plus h 2 D 2 F

x 1 comma C 2 comma dot dot dot x n plus h n, plus dot dot dot finally, h n D n of x 1 x 2 dot

dot dot x n minus 1 comma C n, ok.



I have applied the mean value theorem to each pair of equations here, each pair here and

found out a C i in between x i and x i plus h i, such that I am applying the mean value

theorem to that particular variable. So, you get h 1 D 1 of F, C 1 comma x 2 plus h 2 dot dot

dot x n plus h n, and finally, the last term h n D n x 1 comma x 2 comma dot dot x n minus 1

C n, ok.

Now, what we want to do is we want to show that the derivative of F at x exists, so we need

to construct an error term. So, what we do is because each one of these partial derivatives

exists, each one of these partial derivatives exists, we know that D i of F of x 1 comma dot

dot dot x i minus 1 comma C i comma dot dot dot x n each one of these partial derivatives I

can just write this as D 1 of F sorry D i of F of x 1 dot dot dot x n plus E i h some error term,

ok.

Now, why does this follow? Well, this you can always write down an error term like this.
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But what is key is that, if such that E of h goes to 0 as h goes to 0, ok. So, let us look at this

expression once more. What I am saying is each such partial derivative D i F of x 1 comma

dot dot dot x i minus 1 comma C i comma dot dot dot x n is equal to the partial derivative at

the point x 1 to x n plus this error term E i of h and this error term goes to 0 as h goes to 0.

Well, this just follows because partial derivatives are assumed to be continuous in the

hypothesis. We have assumed that each partial derivative is continuous. So, there will be this

error term and this error term will go to 0 as h goes to 0. So, net upshot of all this is F of x

plus h minus F of x is nothing but summation i equals 1 to n, let me write the n properly 1 to

n, h i D i of F x plus plus h i E i of h, ok.

This just follows from this expression here each one of these partial derivatives I have this

further expression, I just substitute. So, I get F of x plus h minus F of x is equal to summation



i equals 1 to n, h i D i F x plus h i E i h, ok. But, call this summation h i E i h to be just E of h,

define this to be just E of h, limit h going to 0 E of h is equal to 0, right.

In fact, limit, in fact, this is not enough to guarantee, is not enough to guarantee. What we

want? We want limit we want to consider limit h going to 0, E i E of h by norm h, right.
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So, let us just take one term, let us just take E 1 of h 1 E 1 of h by norm h, ok. But we know

that norm h would be greater than h 1, so if you want to take the modulus or rather the norm

of this whole thing, no need to take the norm, this is just a real valued thing. Just take the

modulus of this, this is going to be equal to, this is going to be equal to or rather less than or

equal to E 1 of h because modulus of h 1 is less than or equal to norm h, ok.
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So, this just shows that a limit h going to 0 of E of h by norm h is equal to 0 because each

term E 1 h by nor h 1 E 1 h by norm h this one goes to 0, ok. So, we conclude that the error

term that we have defined E of h has the property the limit h going to 0 E of h by norm h is

equal to 0, ok. This shows F is differentiable at x in U.

Not only does this show that F is differentiable at x in U, we get the matrix representation of

the map. It is just D 1 F x comma dot dot dot D n F x. This is the expression for the derivative

in terms of the standard ordered basis on R n and the single vector 1 on R. With respect to

this pair of basis this is going to be the expression for the derivative. 

Why is this going to be the expression for the derivative? Well, because we have written F of

x plus h minus F of x as summation i equals 1 to n, h i D i F x plus this error term within this

error term is sub linear, ok. So, this concludes the proof that whenever the directional



derivatives, sorry, whenever the partial derivatives exist and are continuous throughout an

open set U then the function F is in fact, differentiable at U, ok. 

So, this allows us to compute derivatives explicitly using one variable calculus, everything

gets reduced to doing classical differentiation which we are all experts at this point of time.

So, this concludes this video on directional derivatives and the gradient.

In the next video, we will study some basic properties of the gradient and also interpret the

gradient as giving the direction of maximum increase of the function. This is a course on Real

Analysis, and you have just watched the video on Directional Derivatives and the Gradient.


