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We have studied the Laplace Equation and the Diffusion Equation in a fair amount of detail.

So, we will spend a little time on the Wave Equation, right. So, in this lecture, we will look at

how to solve the wave equation using the method of characteristics.
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So, when we started from a general perspective discussing PDEs, we classified PDEs into

parabolic elliptic and hyperbolic PDEs. And so, we also discussed the method of

characteristics in a fair amount of detail, right. So, the wave equation which I assume we are

all familiar with, maybe from electrodynamics or you know some of the elementary courses

on waves, I mean I assume that all of us have at least seen the wave equation.

So, this is the wave equation which is, this is a second order derivative with respect to time

and a second order derivative with respect to x. So, it can be written in a more general form

in three-dimensions or you know involving Laplacian operators and so on. But let us consider

the simplest version of it in 1D.

So, this is the wave equation, this c, we know has the interpretation of the speed of the wave

that we will see again as we go along. So, it is a hyperbolic PDE. So, you can go back and

check this discussion of you know classification of PDEs and how this will turn out to be a

hyperbolic PDE.

And also, the discussion around the method of characteristics involves finding a suitable

substitution, right. So, we will just you know write down the substitution here, right. So, the

logic into how to find such a substitution you can go back and find in an earlier lecture.

But, so here, if you just choose zeta as x plus c times t and eta as x minus ct, if you introduce

these two variables, and then make this change of variables using the chain rule. So, you have



to compute dou u by dou x, which comes out in this form. And dou u by dou t, which comes

out in this form, right. So, you can check the algebras, there is just a factor of c and a minus

sign in the second of these.
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And then, if you differentiate again and use the chain rule carefully collecting terms, you can

show that the second order derivative with respect to x, and the derivative second order

derivative with respect to t, give us these two expressions. There is a c squared here, and then

this is you know it involves these second order derivatives with respect to zeta and eta. So,

yeah, basically, these are the two expressions we are after. And so, if you go back and

substitute these expressions in the original PDE, so we get you know this equality, and it

simplifies quickly to, just, this is a very simple looking equation, right.
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So, that is the whole point of the substitution. The method of characteristics is to find a

suitable substitution which eventually converts rpd into an extremely simple form from which

in fact, we can read off a general solution. So, the formal solution can be immediately written

down. So, u of zeta comma eta is simply some arbitrary function of zeta plus some arbitrary

function of eta, right. So, this you can argue by integrating once with respect to zeta, then

integrating again with respect to eta, right.

Alternatively, you can just take this and take a derivative with respect to zeta and with respect

to eta. So, if you are taking a derivative with respect to zeta, one of them is going to the zeta

then psi of eta is going to act like a constant and vice versa. If you are going to take a

derivative with respect to eta, this part is going to act like a constant, right. So, that is how

this PDE will hold, right.

So, this is indeed the formal solution and going back to the original variables. So, we have

this formal solution for the wave equation, right. So, in fact, this is something which is

familiar, right. So, we have seen how the wave equation admits these wave solutions. So, this

is also known as the d’Alembert solution.

So, some pause, and it reveals that in fact, you know if you take a function of this

combination of variables x minus ct, so this represents a wave which is moving in the

positive direction. So, the psi of x x minus ct represents a wave which is moving in the



positive direction of the x axis at the speed c, while this is a wave which is moving at the

same speed c, but in the leftward direction.

Now, this c is a characteristic speed which depends on the medium, right. So, that is already

sort of inbuilt into this wave equation for us. So, this c comes from the properties of the

medium in which the wave is travelling. But the solutions basically tell us that you know you

can either have the wave moving in the right direction or in the left direction, right. So, now,

depending upon the boundary conditions and the initial conditions, you know this can be

applied to different interesting cases.
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So, let us look at one example, which is the example of the stretched string, right. So, where

in fact, these two kinds of waves conspire in a very special way, right. So, we are given this

stretched string and it has length L, one end is fixed at the origin and the other end is fixed at

x equal to L, right.

So, initial displacement is given to be this function and it is released at rest, let us say, for

simplicity. And our task is to find we also take these very simple initial conditions, right. So,

our task is to solve for u of x, t. So, it is possible to just start from this general formal solution

and work out this problem involving these particular boundary conditions.

So, yeah. So, this is the differential equation. The boundary conditions, it's good always to

write down explicitly the boundary conditions in terms of the equations. So, u of 0 comma t,



0, u of L comma t is 0, u of x comma at time t equal to 0, it is just this function. And dou u by

dou t at time t equal to 0 is just 0, throughout, right. So, there is no velocity for the wave at

time t equal to 0.
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Now, this is the general solution. So, all we have to do is fit this general solution along with

these boundary conditions and it is quite straightforward to do. So, if you plug in the initial

conditions, then we have phi of x plus psi of x is equal to this function and then phi prime.

So, if you take the derivative with respect to time and then put t equal to 0, so you get this

equation. So, basically, the derivative of the derivatives of these functions are the same,

which is the same as saying that phi of x and psi of x are different from each other at best by

some constant c, right.

So, if once we have this, we can go back and write down phi of x and psi of x according to

this. So, you get phi of x is equal to u naught sin pi x by L plus c, the whole thing divided by

2 and psi of x is equal to half of u naught sin of pi x by L minus c, right. So, the general

solution is I mean after all we are interested in you know we have to put back the time. So,

this is you know at t equal to 0. We have worked this out, and then the structure of these

functions have to be like this because of the initial conditions.

So, the general solution is given by this. So, you see that when you plug in this form, and this

form, you know because you have this sum, this c is anyway going to cancel. In the final



solution of interest for us, the c is actually not going to play any role. So, for simplicity, we

might as well just set this constant to be 0, right. So, we will do that.
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And so, then we will just work with phi of x is equal to this and psi of x is equal to this. So, in

other words phi of x is actually the same as psi of x. Both these functions are the same, and

now it is straightforward to impose the boundary conditions which are given here, right. So,

at x equal to 0 and x equal to L, they have to be pinned, right.

So, then you have phi of ct plus psi of minus ct equal to 0. And, but phi and psi are really the

same, so basically, you get this to be an odd function, right. And which we already have

actually sort of inbuilt into this. So, we considered a very simple initial condition, such that

the problem became actually straight forward.

And the other condition is phi of L plus ct plus psi of L minus ct equal to 0, and we have, our

function is odd. So, indeed this holds all automatically as you can verify. And the second

condition is also automatically satisfied because this sin function goes to 0 at x equal L, right.

So, you can check this I mean; so, you have you if you put you know in the place of this

argument, you have to just put this, and in place of this argument you have to put this.

And then you know when you have L, so you get pi plus and pi minus in other cases you can

check from the property of sinusoidal function. That indeed it is automatically satisfied. We



do not have to do any extra work. So, this is because we have chosen an extremely simple

initial condition, right.

So, the full solution of the problem is then simply given by the sum of this, right. After all,

we have to do this. And it is straightforward to write it like this. And in fact, there is a more

compact way of writing this which comes from just some basic trigonometric identity adding

two sines, you can rewrite this as u naught sin pi x by L times cosine pi ct by L. You can

check this, ok.
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So, it is instructive to plot this function. So, let us first plot the sum or separately each of the

terms, and then we will plot this sum.
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So, here I am plotting you know; there are these two composite guys. I mean of course, for

simplicity I am taking c to be 1 and L to be 1, you know is just I mean as far as you do not

even need u naught at this point. I am plotting this and this separately, so you can see that I

mean it is time which is going to vary as a function of time. The shape of this curve is going

to vary.

So, you see that there is a right moving wave and then there is a left moving wave, right. So,

the two components are the two waves, one of them moves to the right and the other one

moves to the left. And so, there is this periodicity and there is a periodic time interval, at

which both of them are going to just merge with each other, right, ok. So, both of them are

traveling waves. But together they can conspire to give us you know this what is called a

standing wave.
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So, here I have added the two. Now, you see that as I increase the time, this is the initial time

condition which has been chosen very, in a very special way here.
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So, you see, this is what you get, ok. There are two traveling waves which can conspire to

give us a standing wave, right, which is more appropriate for further description of a

stretched string, ok.

Thank you.


