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Hello everybody. So, in this lecture, we are going to look at some illustrative examples where

we solve the heat equation using the method of separation of variables, but there are some

tricks which come out in a nice way.
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So, consider a rod which is of length l, length 1 in appropriate units, it is placed along the

X-axis, the left end is attached to the origin, and the right end is of course at point 1. And let

us say that it has this temperature profile sin of pi x at time t equal to 0. Now, if the two ends

are maintained at zero temperature, and we allow the temperature to you know evolved as a

function of time. So, initially it has this profile, but what happens to its profile as a function

of time right? So, that is the question.

So, let us say that the thermal diffusivity is just unity, and we obtain the solution by solving

the heat equation right. So, we have the heat equation dou capital T by dou t is equal to dou

square capital T by dou x square.
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Now, subject to these initial and boundary conditions, the initial condition is that T of x

comma 0 is just sin of pi x, and the boundary conditions are at x equal to 0 for all times it

must be 0; and at x equal to 1 for all times, it must be 0. So, this is a Dirichlet problem right.

And we proceed to solve it by the method of separation of variables: X of x times theta of t,

then you plug it into the PDE. We have this differential equation and divide it throughout by

capital T.

So, you get 1 by theta times d theta by d t is equal to 1 over X d squared X by dx squared.

And both sides must necessarily be a constant which it is convenient to put it to be minus mu

squared. So in these kinds of problems typically the temperature is going to decay as a

function of time. So, it is appropriate to choose minus mu squared. And so the time part is

immediately solved. And you get theta of t is equal C times e to the minus mu squared. All of

these are standard steps we have seen.

Now, the special part can have a cosine solution or a sin solution, and arbitrary linear

combination is possible in general.
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And to fit the boundary conditions here, you must have X of 0 equal to 0. So, X of 0 equal to

0, then A must be 0 right. So, cos will not work here. So, we have to work with sin. And also

we have when X equal to 1, this must be equal to 0. So, B times sine of mu must be equal to

0. So, mu must be some integral multiple of pi. So, that is it. So, we have got the initial

conditions, we have got the; we have got the boundary conditions. Now, we have to plug in

this and put in the initial condition.

So, the full solution in general is going to be given by a Fourier series of this kind T of x

comma t is a summation over e to the minus n squared pi squared t sin of n pi x. But in this

very special case, we have an initial condition which is particularly convenient. So, the initial

condition is t of x comma 0 is equal to sin of pi x. So, in fact, we are not going to get an

infinite series, but we will get only one term in the series.
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So, we immediately see that, in fact, all we need to do is put C 1 equal to 1, and all other C

n’s are 0 right. So, you can look at this a little more closely and convince yourself that indeed

for this particular problem, it is very simple. And the solution is simply T of x comma t is

equal to e to the minus pi square t sin of pi x. So, it is useful to plot this and trace the time

evolution of this.
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So, initially the profile is like this. So, it has a peak.
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And then as a function of time, it keeps on going down; and eventually it goes to 0 right. So,

one reason I included this solution is because if you remember from our first discussion of a

heuristic discussion of the heat equation, we said that you know initially suppose there is

some kind of curvature, we want to model come up with a PDE which is going to keep on

killing this curvature, and eventually take it down to a steady state solution which will be of

solution of the Laplace equation and that is exactly what is going on right.

We use this intuition to develop the PDE. And now we are solving this PDE and we are

seeing that indeed that is exactly what it is doing right.
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So, we look at one more example where a subtlety shows up which is a very close you know

closely related problem to the current problem, but there is an additional subtlety which we

will discuss in the next example. So, it is the same kind of a rod of length 1 which is along

the X-axis. Now, the temperature profile is just 0. It is initially at 0 degree Celsius

everywhere.

And now suppose you leave the left end at 0, but suddenly you heat up the right end and keep

it at 20 degree Celsius. So, now, the question is what will happen to the temperature of this

rod as a function of time and as a function of space right. Once again set thermal diffusivity

to be unity. Now, I mean it is clear that we must solve the heat equation, we are interested in

the dynamics.

And now the initial condition is a bit different, and the boundary condition is also different

right. So, is a 0 throughout and. So, the initial condition here was sin pi sin of pi x. So, here it

is just 0 right. So, there is no special variation at time equal to 0. But when you crank up this

right end to 20 degree Celsius.

And so this boundary condition is going to make a difference as we will see. So, the solution

itself is a little more complicated, but really it is the same method right. So, everything

proceeds as before except that we must account for this final steady state profile right.



So, when let us think about it physically as t t goes to infinity, the temperature would settle

down to a profile it will be a solution of the Laplace equation really right. So, in steady state

this part is going to be 0. So, no change happens as a function of time that is what is meant by

steady state. For when t becomes very large, dou T by dou t will be 0. So, it is going to be just

dou square T by dou x square and that is equal to 0 which is the thing but the Laplace

equation right.

So, at when t is infinity, if the right end is at 20 degree Celsius and left end is at 0 degree

Celsius and if the temperature profile must be a solution of the Laplace equation, the way that

can happen is if it is a linear growth from 0 to 20 degree Celsius at x equal to 1.
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In other words, the steady state solution must be T ss of x is equal to 20 x. So, now, given

that, so we know what the temperature profile is at t equal to 0, we know what the

temperature profile is at t equal to infinity. So, in fact, the Fourier series must be worked out

in this manner. So, you take this t of x comma t and then subtract out the steady state solution,

and all the dynamics is really contained after you have subtracted out the steady state

solution.

So, it is this quantity which is going to be this Fourier series. And in fact we will plug in the

initial condition into this form now. When you do this, you are going to get, so I mean at t

equal to 0, it is just 0 everywhere. So, 0 minus 20 x, so the steady state solution we have



worked out using our physical intuition. And so you have minus 20 x is equal to this Fourier

series.

Now, n goes from 1 to infinity, and now it is not going to be just one term because in fact all

terms will leave. You can work out the coefficient: the straightforward exercise and

computing coefficient of a Fourier series is just minus 20 x.
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So, multiply by an appropriate sine function and integrate out between the limit 0 and 1, there

will be this factor of 2 which comes over when do this integral; you should check this. And

the answer is just 40 divided by n pi with you know signs alternating. So, minus plus and so

on minus 1 to the power n you can write conveniently like this. So, the solution is this infinite

series.

So, T of x comma t will be just 20 x plus 40 by pi summation over n minus 1 to the so it is

going to be minus 1 to the n e to the minus n square pi square t divided by you know there is

this 1 over this n and also sin of n pi pi x right. So, there is this is the final answer right which

we can check by plotting it. I mean I have truncated this series to 100 right. So, n goes from 1

to 100, I have made a table, I have taken the sum, and then let me just plot it for you right.

We do not have to go into the syntax of all this.
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So, you see that at time t equal to 0, you know temperature is 20 only here because I have

truncated it at after 100 terms, you see all this fluctuation, but actually it's all of this is exactly

0 this point alone is at 20.
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And then as time progresses, you see a smooth variation ok.
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So, there are some difficulties with this plotting. So, we see that I mean. So, the problem is

that we are using these exponentials of very very tiny I mean n going to 100 is going to make

this a very very tiny number and that is running into difficulties with the precision, but the

key point is that even with just 10, if I keep only 10 terms in this series expansion I already

see that this is particular only problem is that the representation at time t equal to 0 is not so

great, but it is not really a problem we understand this.
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And so if you evolve this, the key point to observe here is this tendency to keep on destroying

curvature right, and at some point it is going to become a solution of the Laplace equation,

ok, alright.

Thank you, that is all for this lecture.


