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Starting with this lecture, we are going to discuss a different kind of PDE namely the heat

equation or equivalently the diffusion equation. So, in this lecture, we will motivate the heat

equation with the aid of a heuristic discussion. And we will also look at how the diffusion

equation comes about, and how essentially the two are really the same ok.
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So, we have seen that the Laplace equation is del square T equal to 0 when a heating rod for

example has reached steady state, then this is the differential equation which it obeys from

which you can compute its temperature profile for instance. But how does this system get to

such a steady state right?

So, what is the dynamics which would drive your system towards the Laplace equation right?

So, in order to answer this question, we can recollect how the Laplace equation is essentially

the same as saying that there are no maxima or minima in the profile right. So, which comes

about from the fact that you know a solution to the Laplace equation is such that the value of

the function at any point is equal to the average of the values that the function takes in its

neighborhood right.

So, if you know if any point is a maximum or a minimum a local minimum or a local

maximum, then for sure you cannot get the value of that function by taking the mean of all

neighboring points right. If it is a maximum, then the mean is necessarily going to be less

than that value. And likewise you know if you are at a minimum it is going to be the mean is

going to be greater than that right.

So, therefore, the Laplace equation basically roots out all these you know all curvature

essentially right. So, in 1D of course, this is obvious because it is just d squared T by dx

squared equal to 0 which means really literally it means that there is no curvature right. So,

the basic property of the Laplace equation is that it tends to root out curvature right.
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So, we can do a thought experiment I mean in a heuristic way about what would happen if

suppose your system is not in such an equilibrium right. So, the tendency will be to go

towards this kind of a steady state. And so in order to do this, let us look at the temperature

profile of some rod right.

So, I have fixed the ends x equal to 0 and x equal to 1 of this rod. And suppose this rod has

this temperature profile T of x is equal to 4 times x times 1 minus x I just made up some

function right. And let me plot this function and in fact, I have in this plot I have made it T of

x is equal to a times x times 1 minus x I am plotting this, and I allow this to take different

values right.
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So, I am imagining a scenario where I mean I will start with this profile. But as you know

time evolves right, so we see that I mean this end and this end they are pegged at this

temperature 0 right. If you want to move towards this function becoming a solution of the

Laplace equation basically then we will want every one of these points to tend towards the

average of its neighboring point. So, let us look at this top point.

So, there is a maximum. So, clearly this function cannot be a solution of the Laplace

equation. So, if you go to this point, then if you replace the value of this function here by the

mean of its neighboring points, both of them are slightly lower. So, its value is going to tend

to decrease. So, and likewise the value here is going to try to decrease and so on. So, in

general there will be a tendency for this to keep on decreasing right.
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So, this is some kind of cooked up dynamics I made right, I do not, I am not claiming that

this is precisely the rate and all these things are not being taken care of.
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But qualitatively so the tendency will be for it to root out this curvature and eventually it is

going to go to steady state. And in this case it is kind of a trivial steady state where T of x is

just 0 right.
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So, if this something similar would happen if we had inverted the initial conditions, if you

had started with minus 4 x times 1 minus x, and then it might be something like this.
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The time evolution might take it in the other direction, and eventually it is going to go to 0.
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Yeah, just to complete discussion I also have another initial condition where I cooked up this

function where you have both kinds of features.
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So, there is a; there is a peak and a you know top positive peak and a negative peak. And so

the tendency will be to root out you know curvature of every kind. So, as time progresses, we

might end up with a situation like this right.
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So, and in general, there is no need that you know the ends have to be at 0 you might have a

more complicated scenario like this.
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Where the right hand is pegged at some other temperature.
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And so eventually some dynamics you would expect it to do this, basically it is going to root

out all this curvature right. So, what is the simplest way to model such you know destruction

of curvature and so that is really that it will get us to the heat equation?

So, a natural model to come up with is to say that whenever there is curvature you know the

temperature is going to change by an amount which is proportional to the curvature itself, and

in a direction such that the curvature is you know reduced and eventually destroyed right.

So, that is given by just this very simple equation dou T by dou t, so that is like the change in

the temperature it should is proportional to the curvature del square T Laplacian of this field.

And so there is this constant alpha which is a positive constant. So, you can check that you

know this equation will with a positive value of alpha is going to keep on decreasing the

curvature.

And alpha goes by the name of thermal diffusivity. So, this heat equation, this is the heat

equation. And so we have argued in one d, but essentially the idea is the same even in higher

dimensions. So, the tendency will be to root out curvature right. So, we will see now that in

fact the heat equation is the same as what is also called the diffusion equation. And the

diffusion equation is derived using the following arguments right.
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So, let us look at what are called Fick’s laws. So, these empirical laws which presumably

were discovered by Fick. These are a couple of laws which are really you know statements of

conservation right. So, let us say that you are considering a concentration density of some, so

there is a fluid which is concentrated in some region right, it could be a perfume which is you

know which is initially localized in some region, and then you might ask how does this

perfume spread as a function of time.

So, concentration density of rho of r comma t, and due to random jiggling motion of the

molecules you would expect that there would be a tendency for this to keep on expanding

right. So, for the purpose of this discussion, we assume that the only dynamics comes from

this kind of random motion of the particles. You know we ignore gravity and other kinds of

phenomena like convection and so on.

Ignoring all of that, and thinking of this as purely a result of random motion of molecules, we

have these two laws right which are called Fick’s laws. So, first law first Fick’s law is really a

statement of conservation of mass right. So, it says that if you consider some you know some

infinitesimal region and find out what is the rate of change of the concentration density in that

region the dou rho by dou T must be equal to the negative of the divergence of the current

right.

So, the current is one way of keeping track of how many particles are exiting some small

region, and then this concentration density is another way of keeping track of it. And so both



of these you know there is a bookkeeping exercise which says that there is no loss of there is

no destruction of mass right. So, therefore, dou rho by dou T must be equal to minus

divergence of the current density.

And Fick’s second law says, so this is sort of like the you know assumption we made when in

our heuristic discussion of while deriving the heat equation which is that you know the

curvature there is this tendency to destroy curvature, and we just took it to be proportional

rate of change to be just proportional to del squared t.

So, something like that is being said here which is that the current density itself right. I mean,

we can imagine how particles which are concentrated in a region will tend to go from a

region of higher concentration to a region of lower concentration. So, the direction of current

is of course from a region of higher concentration to a region of lower concentration.

But so the assumption here which is within the realm of what is called linear response theory

which is that this current is actually just proportional to this gradient right, the sign is fixed in

such a manner that you know particles move from a region of higher concentration to a lower

concentration.

So, if you invoke this argument, then you have this current is given by minus some constant

times the gradient of this concentration density of this fluid. And so this D has the name of it

goes by the name of diffusion constant. If you combine these two Fick’s laws you know you

plug in place of the current density j you plug in this minus D times gradient of rho.
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Together, we immediately get the diffusion equation that is dou rho by dou T is equal to D

times del squared rho which is really the same as the heat equation that we saw from heuristic

point of view. Now, it turns out that often it is convenient to work with a probability density

function rather than a concentration density. So, basically probability density is like you ask

what is the probability that a given particle is in some region, whereas concentration is about

asking how many particles are in the region.

So, they are very closely related, and in some sense they are really the same. So, often we

work with the probability density function, and then you know the partial differential

equation satisfied is simply given by this equation dou p by dou T is equal to D times del

squared p which goes by the name of the diffusion equation, ok.

Thank you.


