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Orthogonal Polynomials
Lecture - 51
The generating function corresponding to Legendre polynomials

So, we continue our discussion of Legendre polynomials. In this lecture, we will look at the
generating function which is associated with Legendre polynomials, and briefly sketch how it
can be used to derive some of the results which we have already seen in a very clever way,
but also it opens up possibilities of deriving other results which some of which will be part of

homework ok.
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The generating function

Like we did with the Hermite polynomials, we can stitch together all the Legendre polynomials as coefficients and form a series:
%
Jl
gl = )P, [1] <.
n=0

It tums out that a closed form expression for the above function exists, and is given by:
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To get a feeling for how this plays out, let us write y = (2 a- rzj and expand (1 - yy'l/ 2 0 write:

So, what you do is you collect all these Legendre polynomials and then tag them with these
powers t to the n, and then form the series right. So, notice this approach is similar to Hermite
polynomials, but by convention it is a little bit different from how we did with the Hermite
polynomials where we had these factors of 1 by n factorial which was built into this series

right.

So, whereas, here it is just simply t to the n times P n of x, and so it so happens that this is a
convergent series when mod t is less than 1. So, you have to restrict mod t to be less than 1.

And so there is a closed form expression available for this generating function, and it is



simply given by 1 over square root of 1 minus 2 x t plus t square. So, this generating function

you might have encountered in E and M, but I mean let us see how it operates right.

So, I mean first of all we have to argue that this is indeed the correct generating function. And
in order to do that, we have to show that if you take the nth derivative of this function g of x
comma t, and then divide by 1 over n factorial right I mean which basically a Taylor series
expansion of this function you know about t equal to 0 is supposed to is that is what this
expansion is. And these coefficients are functions purely of x. And they have to be given by

this formula. If you can show this, then we are done right.
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‘This is not quite a proof though. It is possible to take this route of collecting terms systematically, and make it into a proof. However, we will take
another approach. Let us expand
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We now have simply to show two things. One is that (1) = 1 and the other is fy,(x) satisfies the Legendre differential equ>*
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So, to get a feeling for how this plays out, so one way to do this is to just rewrite 2 x minus 2
X t minus t squared as y, and then expand this function 1 over 1 minus y to the whole power
minus half 1 over square root of 1 minus y, or 1 over 1 minus y to the minus a half. And then
if you expand it, then we have this expansion 1 plus half y plus half into 3 by 2 divided by 2

factorial y squared so on and higher order terms right.

So, if we collect the first three terms right, we already start seeing a pattern. So, 1 plus half
times 2 x t minus t squared plus 3 by 8 times 2 x t minus t square the whole square plus so on.
And then once again we look at 1, and there is a x t, and then a minus half t squared minus
yeah it is just minus half t squared just from here and then we have this 3 by 8 times 4 x

squared t squared minus 4 x t cube plus t to the 4.



And then if you just collect all of these, we see that you have 1 plus x t and then t squared
times 3 by 2; 3 by 2 x squared minus a half plus higher order terms right, so which we are not

writing down.

But basically the point is that if you look at just these first three terms, you know the in the
term corresponding to t to the 0, the term corresponding to t to the 1, and the term
corresponding to t square the coefficients are exactly the Legendre polynomials. We have
already seen that P naught of x is equal to 1, P 1 of x is equal to x, and P 2 of x is equal to 3

by 2 x squared minus a half right.

So, you can continue and then extract more terms. And in fact it is possible to give a full
argument along these lines to show that in general the nth term is going to be P n of x, but let
us look at another way of showing this. And so it is quite instructive. So, we will sort of
sketch it, but I will not give you all the details. So, the details will be part of homework to
show that you know g of x t is indeed the generating function by a method which I will

sketch now.

So, the idea is that we want to show that you know this function, this closed form expression
you know corresponds to this Taylor series involving Legendre polynomials right. So, but
first of all we are free to do the Taylor series, and write it in terms of some f n of x. So, what

we will have to show is that f n of x is indeed the Legendre polynomials right.

So, it suffices if we show three things, one is first we must show that f n of x is a polynomial,
second is that f n of 1 must be equal to 1 for all n. And the third is if you can show that fn of
x satisfies the Legendre differential equation basically we are done right. So, we can show

that fn of 1 is equal to 1 in a straightforward way.

So, let us do the easy part and leave the difficult part of the exercise for you to check this. I
mean indeed all of these are going to be polynomials in x - that is also clear right just from
looking at this expansion, you will see that the operations involved are all you know squares

and cubes and so on. So, indeed, you are going to get polynomials in x.

And now fn of 1 is equal to 1 follows from the fact that if you put x equal to 1 here. So, you
get g of 1 commatis 1 over 1 minus 2 t plus t squared square root of that which is just 1 over
1 minus t. And then you can of course write this as summation over n going from 0 to infinity

t to the n right.



So, we see that all the coefficients are 1. So, indeed immediately this implies that P naught of
P naught of x is equal to 1, P 1 of x equal to 1 so on, and in general P n of x is equal to 1. So,
in, so at this point, we are calling it just f n. So, f n of 1 is indeed equal to 1 that is

immediately evident from this series expansion which you are familiar with.
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We now have simply to show two things. One is that f(1) = 1 and the other is f(x) satisfies the Legendre differential equation.
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50 fy(1) = 1 holds. To see the other part, we exploit the fact that
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which can be seen by direct differentiation of the generating function. Now if we plug in the expansion in Eqn.(1) into this relation and carefullly
collect terms, we can show that f,(x) satisfies the Legendre equation.

The generating function is a powerful tool. We could have used the generating function to derive the standard general recr- f = hae
already seen. In fact there are a number of other recurrence relations satisfied by Legendre polynomials which can all br
generating function. Let us show just one example.

AP

Now, the other part is a little more involved, it requires some algebra, but I will sort of tell
you how this comes about right. So, the first step is to show that this function g of x there are
two ways of taking partial derivatives of this function g. You can either take a partial

derivative with respect to x or with respect to t.

So, it turns out that there is this nice combination of you know partial derivatives, you take a
partial derivative with respect to x here, and a second order partial derivative with respect to
x. And then you connect it to the second order partial derivative of this function t times g of x

comma t right.

So, I am giving you the answer, but the way to see this is to explicitly show this right. So, I
mean it is like an exercise in sort of trying to fit it you know in it like a trial and error way
perhaps is how one might have discovered this in the first place, but once it is known it is
actually very straightforward to show this. All you have to do is take this function and then
differentiate it with respect to x partial derivative with respect to x, and a second time, and
then combine it with this 1 minus x squared, and then take this you know do a minus 2 x

times dou by dou x of g.



And then you can show that I mean in parallel you can also take these derivatives with
respect to t, and a second order derivative with respect to t. And then you tag along these you
know t is outside and inside in a very well designed way, so that you can show just purely
based on you know the information that you have this function g of x comma t, this relation is

satisfied.

Now, the next step is to take this expansion for g of x comma t that we have, [ mean this is a
Taylor series expansion and plug this into this relation. If the function itself satisfies this
relation, then the series representing the function must also satisfy this relation. And then we

argue that indeed it must satisfy term by term.

So, every coefficient corresponding to t to the n must separately satisfy this relation right and
so because it is a unique expansion you have which is valid in some region right, so Taylor
series expansion. And therefore, we argue that term by term it is going to hold. And when
you do that carefully, you are going to recover exactly the differential equation corresponding

to the Legendre equation.

So, I am not going to plug in all the details, and I will not do it here because it is just a lot of
algebra, and it consumes a lot of time, but this is going to be homework right. So, you will
verify that indeed this relation holds first of all. And secondly by plugging in this expansion,
working out dou by dou x with respect to this dou squared by dou x squared with respect to

all these functions.

And then you have to work out this quantity, you have to work out this quantity, this quantity.
And then collect all of these terms, collect the coefficient corresponding to t to the n, and you
know put that individually to 0, then you will see that that is going to be nothing but the

Legendre differential equation right.

So, that is basically the argument you know this series of steps which you have outlined is
how you show that indeed this is the correct generating function. So, now, what I am going to
do is quickly show you how this is a powerful tool. Once you have the generating function
for a sequence of polynomials, we saw with Hermite polynomials how it can be useful. And

so here again you can use it to derive a number of interesting recurrence relations.
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Example

We differentiate the generating function to get:
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If we now plug in the series expansion of g(x, ) and equate coefficients of equal of powers of # on both sides, we can get the recurrence relation:

nPy(x)= 2n=1)xPy_1(x) = (n=1) Py_p(x).
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So, let me quickly show you how to derive the so-called three term recurrence relation which
actually boils down to just a two term recurrence relation in this case, but let us see how to
obtain it from the generating function. So, what you do is you start with g of x comma t and

take a partial derivative with respect to t.

So, then you get minus a half times 1 minus 2 x t plus t squared the whole power minus 3
halves times minus 2 x plus 2 t right. So, if you then you pull out this minus 2 which cancels
with this 2 and this minus 1. And so basically if you multiply throughout from the left hand
side with 1 minus 2 x t plus t squared times dou g by dou t, then you basically you know this

factor becomes g again.

So, you get 1 minus 2 x t plus t squared the whole power minus half which is g. And then this
you only have x minus t here because you have pulled out this minus 2. So, basically this
factor times this dou g by dou t is equal to x minus t times g. Now, we want to yeah. So, once

again I am skipping some steps which I would like you to work out the details of.

So, you take this relation which we have shown from the master representation for this
generating function. And then you argue that since it is true for the function g of x comma t,
it must be also true for the series representation. So, you take the series representation and
then carry out dou g by dou t, you are going to get another series, and then multiply by this
factor, then you are going to get some series on the left hand side and you get another series

on the right hand side.



And then you have to equate you know the corresponding term by term on the left hand side
and on the right hand side. And when you do this carefully, if you equate coefficients of equal
powers of t on both sides, you would immediately get this relation which is actually nothing

but the recurrence relation we have already derived.

Although in the form in which we derived it looked a little different because we had n plus 1
P n plus 1 of x is equal to 2 n plus 1. So, in place of whatever is n here, if you put n plus 1, it
is going to be the recurrence relation which we have already derived. So, it will be homework
for you to complete this exercise, but there will also be other recurrence relations which I will
also spell out and you should be able to derive those as well using this generating function ok.

That is all for this lecture.

Thank you.



