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In the next lecture, we will be proving the Krull-Schmidt theorem which says that the 

decomposition of a module that satisfies the ascending chain condition and the descending 

chain condition into indecomposable, into sum of indecomposables is essentially unique.  

In that proof there is a certain technical lemma that is required and that basically involves 

understanding the endomorphism ring of any indecomposable module, and that is what I am 

going to do in this lecture. We are going to study the endomorphism ring of indecomposable 

module.  

So if R is a ring, M an R-module, we have seen that we can think of this EndRM which is 

nothing but R module homomorphisms from M to M, which we can think of is the arrows 

from M to M in the category of R- Modules. And this is in fact a ring because we can add two 

homomorphisms point wise and we can also compose them giving rise to associative product 

on this ring.  

So for example simplest example, well may be not simplest, but the most very interesting 

example is that if you take any ring R and you look at R itself as a left R module, then this is 

isomorphic to Phi a, which is the, this is the same actually as, so endomorphism is given by 

Phi a which gives r to r times a for every a and r. 



You can check that Phi a is in R module endomorphism and conversely given any r module 

endomorphism of r, the moment you know where it takes one it takes one to some element a, 

you can show that is actually equal to Phi a. 

And here we have Phi a composed with Phi b of r, well that turns out to be Phi b of r 

multiplied by a, but Phi b of r is r times b so this is r times b times a. But that is r b a by 

associativity, and that is just Phi of b a r. So EndRR is not exactly R, it is very opposite to R, 

where the order of multiplication is reversed. 

So now we will be interested in the endomorphism ring of an indecomposable R module, and 

the property that we will be interested is the fact that it is what is called a local ring. So for 

our purposes we will take the following as the definition of a local ring. I am sure most of 

you are familiar with some of you are familiar with notion of a local ring for a commutative 

ring, may be you are not all familiar with the local ring which is non-commuting. 
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But we will just give a very simple definition a ring R and this we will be applying not to the 

original ring R whose module we are looking at but whose endomorphism ring, but this 

definition is general. A ring R is called a local ring if its set m of non-units that means 

elements which do not have an inverse, is a two sided ideal.  

What is the meaning of an ideal? You can recall from Algebra 1, I is called an ideal if firstly I 

is a sub group of the additive group. Then secondly, it is closed under left and right 

multiplication by arbitrary elements of R. So if a belongs to I, r belongs to R then that implies 

that ar belongs to I and ra belongs to I. 



And that is it, so these are the two conditions. And sometimes we would ask for a left ideal 

which only satisfies the second condition or a right ideal which only satisfies the first 

condition, but here we are looking at two sided ideals. 

So let us just look at some examples to fix this portion. Z mod P to the k Z is local. The non-

units are precisely the elements which are multiples of P, and so they form an ideal here. Z is 

not local, and matrices, let us just stick to fields for now. Is this local or not?  

Well you can show that if you take any non-0 element of any non-0 matrix then the two sided 

ideal, the smallest two sided ideal that contains it is the entire matrix. So there is lots of non-

units in M and k that is matrices which are not of full rank, but they do not unfortunately 

form an ideal. So this is not local.  
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And now for the main theorem of this lecture, so theorem is let M be an indecomposable R 

module satisfying the ACC and the DCC, then EndRM is a local ring. So before proving this, 

we will prove a certain lemma, and this lemma is due to a mathematician called Fitting.  

And it says that if M is as above or maybe we just need if M satisfies the DCC in fact. Well, 

let us just keep it M is as above, and g belongs to EndRM, then either g is a unit, or g is 

nilpotent. Recall that nilpotent means that, nilpotent means that g to the n is equal to 0 for 

some n belonging to N. Some power of g vanishes.  

So let us prove Fitting’s lemma, and so what you do is consider, take any g in EndRM, and 

you consider M, well it contains as a sub module the image of g under M which in turn 

contain g squared M and so on. Now because of the descending chain condition there is some 



stage after which this sequence stabilizes. So by the DCC, g to the n M is equal to g to the n 

plus i M for all i greater than or equal to 0, for some natural number n in N. 
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And what this means is that in particular, g to the n M is equal to the g to the power 2n M. Or 

another words, g to the power n is an isomorphism from g to the power n M to g to the power 

2n M. So now let us proceed further, so if x is in M then there exists y in M such that g to the 

power n x is g to the power 2n y. Just because g to the power n M is g to the power 2n M. So 

I can write x as g to the power n y plus x minus g to the power n y. 

Now let us look at this these two parts of the sum, this belongs to the image of g to the power 

n and this, well if I apply g to the power n to this, so I take g to the power n x minus g to the 

power n y then I will get g to the power n x minus g to the power 2n y, which is 0 because g 

to the power 2n y is equal to g to the power n x. So this belongs to the kernel of g to the 

power n.  

So I have written x as the sum of two thing, one in the image of g to the power n and the 

other in the kernel of g to the power n. Moreover, g to the power n when restricted to g to the 

power n M is an isomorphism and therefore it has no kernel in g to the power n M. So, also 

we have that g to the power, image of g to the power n intersection with the kernel of g to the 

power n is 0.  
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So what we get is the direct sum decomposition of M. So, but M is indecomposable so there 

are only two possibilities, one of the summands is the whole thing. So either M is the image 

of g to the power n or M is the kernel of g to the power n. Now M is the kernel of g to the 

power n means that g is nilpotent, and that was a one of options in Fitting’s lemma, in 

Fitting’s dichotomy so to speak. And so we just need to check that if M is the image of g to 

the power n, then g is in fact an isomorphism, a unit in EndRM. 

So let us just look at that, so if image of g to the power n is equal to M for some n, then what 

we have is that g is surjective. Therefore, what we have is that g, if you take from M mod 

kernel of g to M, is an isomorphism. But that means that the length of M mod kernel of g 



remember M satisfies both the ascending chain condition and the descending chain condition, 

and therefore it is a finite length, it has a Jordan-Holder series and it is a finite length. 
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So the length of M mod kernel g is the same as the length of M, but this is only possible if a 

kernel of g is 0 because you could take a Jordan-Holder series for M and then pull it back 

here via this isomorphism and get a composition series of length 1 greater by adding kernel g 

to it. The only way this can happen is that kernel g equals 0 which implies that g is also 

injective and hence an isomorphism.  

So we have completed the proof of Fitting’s lemma that if g is an endomorphism of n then 

either it is a unit, i.e. it is an isomorphism or it is nilpotent. That lemma was the most 



technical part of the proof of the main theorem and now we can proceed with the proof of the 

theorem. 
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So, proof of the theorem. Well we will take m to be the set of all nilpotent elements in 

EndRM, i.e. g to the power n is 0 for some n, and we will show that m is a two sided ideal. 

And of course we know that the complement of m consists of units and so we will have to 

prove the theorem.  

First we will show that m is closed under left and right multiplication by elements of EndRM. 

So suppose m is in m and g is in EndRM. Now since m is in m, m is nilpotent. So m to the 

power n equals 0, implies firstly that m is not injective. It also implies that m is not surjective, 

it is also not surjective.  

So that means that if you take g times m, this is not injective. So it is not a unit, but we saw 

that every element is not a unit is in m. And this also implies that mg, the original statement 

here, is not surjective, because m is not surjective. So mg again belongs to m, because the 

complement of m consists only of units. So m is closed under left and right multiplications, 

multiplication by elements of EndRM. Now it only remains to show that the sum of two 

elements of m is in m. 
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Now to prove that, m1, m2 are in m then m1 plus m2 is in m. We will prove this by 

contradiction. Suppose m1 plus m2 is not in m, then it is a unit. So I can find some element m 

such that m1 plus m2 times m is the identity for some let us not say m, for some g in EndRM. 

And let us call this n1 equals m1g, n2 be m2g then because m is closed under left and right 

multiplication by arbitrary elements of End R M, this n1 and n2 again belong to m. And 

moreover, n1 plus n2 is the identity element. So what we have is that n2 equals identity 

minus n1, and let us say, since n2 is in m, n2 is nilpotent, n2 to the power k equals 0 for some 

k. 

So let us say that this also holds, then what we have is that n2 times 1 plus n1, no I want n1 to 

the power k, plus n1 plus n1 to the power k minus 1, well that is equal to a identity. Here this 

is not 1; this is identity of M, minus n1 into identity of M plus n1 plus n1 to the power k 

minus 1. 

Now when you multiply these two out, the sum will telescope and terms will cancel out. And 

you will only be left with identity of M minus n1 to the power k which is 0. So then what 

happened, n2 has become a unit but that is a contradiction, because we assume that, we know 

that n2 is in m, so it is nilpotent. And so m1 plus m2 must again be an element of m. And so 

EndRM is a local ring as acquired because all non-units form a two sided ideal. 


