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So, last time we constructed the tensor product of two modules, so let us work in the setting 

of R is a ring and we have right module and a left module, so this is a right module, N is left 

R module and given these two ingredients we define something called the tensor product of 

M and N over R and this tensor product finally had the structure of a Z module or abelian 

group.  

Recall also the fact key fact that we used while constructing this tensor product is that there is 

a an important map from M cross N to the tensor product which we called alpha which is 

which takes each pair m comma n to well a certain element alpha of m n and the notation for 

that element was m tensor n. So, this was just notation for the image of m n under that 

particular map alpha which we constructed.  

And the key point about such elements is that well not all elements of m tensor n can be 

written in this form, the image of alpha is not all of M tensor N, but it is rather close meaning 

the sort of the span of these over Z will give you everything in M tensor N, so every element 

so each element, every element of M tensor N can be written in the form summation mi 

tensor ni, i goes from 1 to k, mi ni, mi come from M, ni come from N.  



So, it is a finite sum of such thing this is not a necessarily a unique expression, the same 

element can be written in many different ways, but what this says is that these elements who 

form M tensor N they sort of generate the group overs Z, they generate the Abelian group M 

tensor N. So, often when we want to prove many things, it is enough to sort of prove it on the 

generators. 
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So, we have constructed the Z module M tensor N the goal of today's lecture is to see what 

happens when you have maps or functions or homomorphisms of M and N. So, suppose I do 

the following given R linear homomorphisms, given R linear maps, so what am I going to 

give you a map from M to another right module M dash and g from N to N dash, where what 

are these M dash is right R module and N dash is left R module.  

So, now and what is an R linear map? Well, it is the usual definition also for right modules it 

just says that if I have f of so aside what is so in this case what is what is meant by right R 

module homomorphism, it just says if I have f of mr then this is nothing but f of m times r. 

Now, this should be true for all m into M for all r in R.  

So, such a map from M to another right module M dash is said to be an R linear map or a 

homomorphism. So, an f which satisfies this and the other property the linearity plus f m2 

this is true for all m1 and m2 in M. So, such a thing is called an R linear map, so this is R 

linear. So, same definition as you would give for left modules, except that everything acts on 

the right.  



So, given two R linear maps from M to another right module M dash and from N to another 

left module N dash there exists a unique well now it is a Z module homomorphism, there 

exists a unique Z linear map and this map is from let us call it something T for now, it is a 

map from M tensor N over R to M dash tensor N dash over R, there is a unique map 

satisfying the following property that on those generators the elements of the form m tensor 

n, so sometimes such elements are called simple tensors or decomposable tensors, so on a 

simple tensor m tensor n T takes the following value it is just given by the product well the 

tensor product f of m tensor g of n. 

So, the claim has given two maps f and g you can construct a third map T which has the 

following action on the generators. Now, the point is to prove a fact like this you cannot just 

start with this as the definition, so starting you know just suppose we say okay let us define T 

like this, let us take elements of form M tensor N and define T in this manner, the trouble 

then is showing well defines, because the M tensor N the decomposable or simple tensors 

they are they generate the module but a given element of the module M tensor N could be 

written in many different ways as a some of mi tensor ni.  

So, if you define it in this way then you will be stuck with the problem of showing that no 

matter which way you take of writing that element as a linear combination or as a sum of a 

mi tensor ni the answer gives you would be the same. So, that sort of messy and we would 

prefer not to do it in that manner.  

So, it satisfies this property for all these guys, so in other words are i.e. on sum like this what 

we mean is that T has the following property, on such a sum it maps it to this. So, like I said 

this is the final property that we want T to satisfy, but we cannot start with this as the 

definition because then we will have to somehow show well defineness. Instead we will do 

this in directly by using the universal property of the tensor product. 
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So, proof, let us use the universal property of the tensor product, so tensor n over R of two 

modules, what was the universal property? Well, it said the following, so if I take M tensor N 

and I define a map to any other module which is Z by linear then there exists a unique map 

from the tensor product. So, I mean I should also take these R balanced maps in this case, so 

let us do the following.  

So, let us take M tensor N over R, so I am doing everything over R here, so let me consider 

the following map, if a M tensor N I can define a map to M prime tensor N prime first, so 

how am I going to find that map so that we will come to this next. So, how am I going to find 

this map? I will take a pair m comma n and map it to f of m comma g of n, now from here of 

course I already have a map to M prime tensor N prime over R, what is that? That is the 

corresponding map alpha prime for the tensor product.  

In other words, this will take this to the element fm tensor gn of N dash. So, let us give this 

guy a name, so this is a some map h, now consider the composition of these two guys, so 

consider alpha prime composition h, now where is this a map from? It is a map from M cross 

N to this module M prime tensor N prime, I claim that this map is R balanced, alpha prime 

composition h is, it is R balanced. So, we call R balanced meant that its usual Z bi-linear 

map, but also it has that property with respect to scalars from R. So, let us prove that it is R 

balanced. So, first thing we need to show is that this is Z by linear, so let us do that.  



(Refer Slide Time: 10:19) 

 

So, let us take alpha prime composition h evaluate it on m1 plus m2 comma n, n should split 

into two pieces, so let us try this. So, this is alpha prime of f of m1 plus m2 comma n, sorry 

comma gn by definition of h and this in turn is just because f is given to be R linear, it is 

going to be the sum so this is now all this is happening inside M prime tensor N prime and 

there of course this tensor product symbol is bilinear, so we know that this is just going to 

give me f m1 tensor gn plus, so the first property is satisfied.  

So, we have checked that this satisfies the bi-linearity in the first component, the linearity in 

the first component, now similarly the other one, so let me just leave this as an exercise, this 

is just equals alpha prime composition h, it is the same proof more or less. Now, the third one 

the R balanced is what we really care about, now that is the new thing here, so let us check 

this. So, what are we going to do? We are going to check the following suppose you take 

alpha prime composition h, you take an element of m, you take an element of n, but let us do 

the following, let us put an r here.  

So, let us write multiply m by an element r from the ring and see what happens to this. Well 

by definition, this is alpha prime of f of mr comma gn, but f is r linear, recall that just meant 

that I can put f mr comma gn and again this is f m r tensor gn. But now, recall that this tensor 

product over R, remove here we are doing all this over ring R that we are looking in that 

tensor product and so this element here, so alpha prime the map alpha prime itself was R 

balanced, in other words this R can be moved from here to here that was more or less the 

defining property there.  



So, what that means is that this is fm tensor r gn, but again now g was r linear, so that r can be 

further pushed inside, this can now go further into the n, so this just becomes fm tensor g of 

rn, which is exactly what we needed to show, this is alpha prime h of m comma rn. So, what 

we have used here really is just the fact that you know the tensor product over R is an R 

balanced map. So, what this means is that the three properties we need are true.  
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So, we had a map M cross N to so again this is a good way to draw the diagram, so from here 

have this map so this alpha prime, so this is h and alpha prime composition h was R balanced, 

so by the universal property, so alpha prime h is R balanced, therefore by the universal 

property, so I will abbreviate it UP there exists a unique map well this is now a Z linear map, 

so unique set linear map let us call it T from M tensor N to such that this diagram commute, 

so there is a map here T such that the diagram commutes. So, in other words T alpha is the 

same as alpha prime h. So, this just I am using the universal property of the tensor product, 

but then observe this is exactly what was given in the proposition.  
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So, T alpha just means if I take T alpha of m comma n is therefore the same as alpha prime h 

of m n for all m in M, n in N and this is just the same as you know so what is this is T of m 

tensor n on the left hand side, right hand side was fm tensor gn. So, we have shown the 

existence of unique map which satisfies this property, in other words which makes the 

diagram commute. So, that proves the proposition, now let me just say something about 

notation we usually denote.  

So, we so here is a word on notation we usually denote this map T by the symbol f tensor g, 

so this is sometimes confusing with that tensor symbol and so on, but f and g here are maps, 

so it is, it does not cause confusion with things of the form M tensor N. So these here are 

maps, so when I write f tensor g what I mean really is the unique map T which is given by 

this proposition. So, now there always exists such a map, now why are we doing all this in 

some sense or where does all this fit?  
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So, here is a remark on categories and functors and where all this fits in that framework, so 

observe that well in some sense the tensor product can be thought of as follows it is like so 

okay, so let me define a category C, so the objects of this category are pairs of objects, so 

what is a typical object in this category? It is a pair M comma N, where M is right R module 

and N is a left R module, this is like a product category if you wish, you take the right 

modules as a category, the left modules as a category and what I am forming here is really 

their product category. 

And the arrows now, so these are the objects and the arrows are again you know the arrows 

as you would have in a product category which is I take a pair M, N and what is an arrow to 

another object in this category and arrow is just a pair of arrows. So, an arrow is a pair of 

arrows f, g where, now what is f? f goes from M to M prime, f is an arrow from here, that it is 

in R linear map and similarly g is an R linear map from N to N prime. So, these are the 

objects in the arrows in this category.  
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And what we are just saying right now is that the tensor product can be thought of as well it 

is, at least it is the following it takes objects in this product category C and maps it to objects 

in the category of Z modules, so here is the, so this is the category on the other side of the Z 

modules. Now, what is this tensor product map? It takes this pair M, N and maps it to M 

tensor N over R.  

Now, what we have just shown, so this is the tensor over R function tensor over R map what 

we have just shown is that in some sense it is also a functor meaning while we still have to 

prove it, but it not only does it map pairs of objects to an object pair, it also maps arrows to 

arrows, in other words, if I take another pair M prime, N prime in C and I take an arrow 

between them, but what is an arrow? An arrow is actually a pair of arrows from M to M dash 

and N to N dash, given such an object, given such a narrow what we have just shown is that 

there exists an arrow between M tensor N and M prime tensor N prime.  

And this is that map which we called f tensor g. So, not only does this tensor product 

construction map pairs of objects or objects in this product category to Z modules it also 

maps arrows in the category C to arrows in this category of Z modules. And what is more, 

this is actually a functor, so claim there is more, this is actually a functor from this category C 

to this category of Z modules.  

Now, recall the definition to show that something is a functor you need to show well more or 

less two things that it respects the composition of arrows and it respects the identity arrow, in 

other words, so let us show that it satisfies the two axioms of a functor. So, firstly, we need to 



show compositions are respected. So, proof a, so let us take compositions, so maybe we will 

go to the next page.  

(Refer Slide Time: 20:43) 

 

So, first I need to show that this we need to consider compositions, so if I take M cross N let 

us draw the same diagram as before M prime tensor cross N prime, so if I have I mean this is 

the arrow, this is the one which takes m, n to fn, gn and suppose I have another one like this 

M double dash cross N double dash.  

And I have another arrow which is it takes m dash cross n dash to let us say a of m dash 

comma b of n dash, it is again an arrow in the product category, then observe that if you 

compose the two, so what do you get when you compose these two guys? So, the full 

composition does the following, it takes m, n and maps it to just the composition of a with f, 

so it is a of f of m, this is the composition a with f, b of g of n, a and b here are maps. So, it is 

just the composition of these arrows.  

Now, recall how those things worked at the level of the tensor product. So, whenever I am 

given an arrow, so let us do the vertical ones first, so given this arrow from M cross N to M 

dash cross N dash, we said well that defines a map between, a similarly there is a map like 

this, so this is the map f tensor g that is the map a tensor b.  

Now, what we need to show to show that this is a functor, the first thing we need to show is 

that if instead you take the composition of these two arrows in the beginning, which means it 

you look at a, f and b, g as your new maps from going from M cross N all the way to the 

other end, M double dash cross N double dash, then the corresponding map that you define 



here, so what would that be called? That is called a composition f, so which I will write as af 

tensor bg. So, we need to claim, we will need to show that this af tensor bg map is the same 

as what you would get if you composed f tensor g and then a tensor b. So, that is the first 

axiom we need to check. So, let us check that.  
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af tensor bg this map is it the same as f tensor g composed with a tensor b. Now, to check a 

thing like this it is actually enough to check it on the generators, they are both Z linear maps 

from they are both maps with the same source and the same target, so you just need to show 

that both maps agree on the generators. So, check on the generators, so what are the 

generators? Well, we will just take the ones of the form m tensor n, let us just check it on 

these decomposable tensors.  

So, let us apply the left hand side on those guys, if you take the left hand side in you apply it 

on m tensor, n then by definition this is just af of m tensor bg evaluated on n, which by 

definition is a acting on f of m tensor b evaluated on g of m. Now, let us apply the right hand 

side on m tensor n observe this again by definition a tensor b evaluated on again that is a on f 

m tensor b of gn. So, which is obviously the same, so the left-hand side and the right-hand 

side are exactly equal.  

Similarly, so we have checked the first property for this to be a functor, the second property 

is that it preserves identities, so that is the second thing we need to check. So, what that 

means is if I take M cross N from M cross N to M cross N, if I take the identity arrow, so 

what is the, it should map identity objects I mean identity arrows to identity arrows, so what 

is the identity arrow in this category C?  



Well, that is it is easy to check it is just the identity on M comma the identity on N, it is the 

pair, it just takes m, n back to itself, this is the identity arrow. So, given this what is the 

corresponding arrow on the tensor product side in other words what is this? So, let us check 

what is this, is this just the identity of the element identity is this just the identity arrow on M 

tensor N, that is the question. So, let us check, so let us evaluate again on the generators that 

is all we need.  
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So, identity M tensor identity N, by definition on a generator just gives me, which is just m 

tensor n, which is therefore just identity map evaluated on m tensor n. So, therefore we have 

again shown the identity axiom. So, this is also true. So, identity axiom is true. The 

composition is also respected. 

Therefore, what we have is that this is a functor, so proved. So, that is really the point here 

that the tensor product is actually a functor from the category whose objects are pairs M and 

N of right and left modules over R from that to the category of Z modules. 


