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We are going to consider one of the historically, you know how Galois Theory really arose, 

which is from the efforts to solve polynomial equations for their roots. So for example, recall 

if you have a quadratic equation, then we have a formula for its roots, so x square, so let us 

assume it is monic, x square plus b x plus c equal to 0; the roots are given by minus b plus 

minus by 2.  

Now, similar formulas were known for both degree 3 and degree 4 equations and the 

formulas always involved you know, some closed form expression like this. So, maybe it was 

things like you know, something which involved cube roots or square roots or fourth roots 

and so on and often they were rather you know, complicated such expressions, but 

nevertheless, there was some closed form expression that people had managed to work out. 

So, among the famous names associated to the cubic equation is Cardano. So, there is the 

Cardano solution to the cubic polynomial; so, degree 3 polynomial, degree 4 polynomial and 

of course, you know that brings the natural question up, which is can one do the same thing 

for all polynomials of all degrees?  



And Galois sort of considered this problem as did some people before him but Galois theory 

really arose from his efforts to you know, understand the solvability of the roots for a general 

polynomial and it turns out that degree 5 polynomial, you know, a general one some of them 

can be solved but you can always find degree 5 polynomials whose roots cannot be expressed 

in such forms.  

They can, you cannot find a formula for the roots. So what we are going to do over the course 

of the next few videos is to try and see how this is proved. Now, let me just define some of 

the notions that we will need.  
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Now, given a polynomial; so here, now we are going to always look at the base field Q and 

we will, so we know that given any polynomial with coefficients in Q, it definitely has roots 

in the complex numbers. So we will sort of keep looking at Q and C throughout. I am not 

going to look at any other fields really.  

Now, definition given a polynomial, given polynomial f, with coefficients in Q, we say that 

the Galois group of f, so this is the definition, the Galois group of f and I will give it a name, 

Gal of F is the following. It is just the Galois group or the group of auto morphisms of K over 

Q, where k is a splitting field of f.  

So look at the splitting field because it is a splitting field, it is normal. Q is of characteristic 0. 

So this is separable and so it is a Galois extension. So you have got this Galois group, the 

group of auto morphisms and we call that the Galois group of f. So, for example, if so we 



have seen many such examples before, if it is a quadratic x square minus 2, then the Galois 

group of this polynomial has cardinality 2.  

So it is just isomorphic to the cyclic group, if I have x to the n minus 1, then the splitting field 

is the cyclotomic field of the nth roots of unity and we have seen that the Galois group of the 

cyclotomic extension is the value you take the rings at mod n Z and you look at the units in 

that ring, the elements which have multiplicative inverses and we have seen, so this 

cardinalities phi of n and so on; Euler’s totient function. 
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And so here is the eventual theorem that we are going to go towards, let me state it upfront 

and there are many intermediate steps which we will take up one by one. So given a 

polynomial with coefficients in Q has degree 5 and if it is Galois group is isomorphic to 



either the symmetric group is 5 or the alternating group a 5, remember that is the set of even 

permutations, then the roots of f cannot be expressed as radicals.  

So, the key word here is radicals, we sort of know what that means in the quadratic and cubic 

cases. Radicals are things like this taking some nth roots of other expressions. So, what does 

an example of you know, what is the radical expression? So, here is a radical expression in 

terms of radicals.  

I will give you an example. So, let us do something complicated I can take square root of 

square root 91 plus 4 something like that maybe plus square root of cube root of 4 plus cube 

root of maybe the seventh root of 9 and so on. So, you can you can imagine what I mean. So, 

I can have many layers of nesting; meaning I can take the square root of the cube root of 

some expression and so on and so forth.  

So, any such thing is what we would like to mean by a radical expression or an expression in 

terms of radicals. So, what this theorem says is that you cannot get a formula for the roots in 

in you know of this form, which we are able to do for quadratic, cubic and the quartic 

equations. So, sorry I called them quadratic again, this is what is called quadratic degree 4. 
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Now, let us see what how to formalize this a little bit better. So definition; what does it mean 

to take radicals? So simple radical extension; so I am going to define what is meant by a 

simple radical extension; is an extension of the following form, is an extension of the form, I 

have some base field and I have an extension F which is obtained by adjoining just a single 

element alpha to the base field such that what properties is alpha? 

Some power of alpha belongs to the field, so for some n greater than equal to 1. In other 

words, i e alpha satisfies the polynomial, what will it satisfy? x to the n minus beta equal to 0 

for some beta which belongs to the base field. So, it is another way of saying you take some 

element of the base field and you adjoin some nth root of that element.  



So that is like what we are doing in in these examples. So, we sort of take some element of 

your base field. So maybe this is your element of the base field and then you are trying to 

take the cube root of that element. Of course, this element of the base field itself is obtained 

as you know, you first take root 5 you adjoin root square root of 5 to the rational numbers. 

You get some field now, to that field you adjoin another element the seventh root of 9 and 

you get another further element and so on. So there are, we are not just doing you know, 

radicals in one step. So, this is what we have defined so far is what it means to just do a one-

step radical. More generally, we have a definition.  
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So, an element alpha in C, a complex number is said to be expressible in terms of radicals, 

you say it is expressible in terms of radicals, if there exists a tower of simple radical 

extensions. So, there should be a tower of the following kind that I start with the rational 

numbers.  

We will call that K naught; there should be K 1, K 2 such a tower, such that each K i over K i 

minus 1 is a simple radical extension and alpha is in the topmost guy, alpha belongs to K r. 

So, when you say each of this I mean for i equals 1 to r. So, this is the formal way of 

encapsulating the idea that you keep doing multiple nth roots, you to keep taking multiple nth 

roots and observe just a quick aside that this is very, very reminiscent of what we have seen 

already in for constructible elements.  

So, this is formally similar to the definition of constructible elements, to the what we call 

constructible numbers. There we said we had to start with Q and keep doing you know 



quadratic extensions and a real number there was said to be constructible if it can be realized 

as part of the topmost extension in a tower where, you know each successive thing is 

quadratic.  

Now, here we do not demand it is quadratic instead we say it each of them should be a radical 

extension. It should be obtained by adjoining some nth root, may not be a square root. So, 

recall quadratic extensions are always realizable as adjoining the square root of some element 

from the base field in the sense that this is a generalization you can adjoin any nth root. 
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Good. Now, what is the key thing, key fact that one needs to know about this? So that is the 

following proposition. So, let n be at least 2, I mean adjoining the n equals 1th root of an 

element does not mean, does not give you anything new. Now, let F be a subfield of C 

containing all nth roots of unity, containing all nth roots of unity.  

So, e to the 2 pi i by n and its square cube and so on. Now, if alpha in C is such that it is nth 

power belongs to F then the extension, so I have F and I adjoin alpha to it. The claim is that 

this extension is actually Galois, further with cyclic Galois group. So this is the key 

proposition. So, observe this is a simple radical extension.  

So, what this means, in other words, i e simple radical extensions, i e, simple radical 

extensions and I am only talking about subfields of C here. So simple radical extensions have 

cyclic, are Galois and have cyclic Galois groups. So have Galois. That is just a quick way of 

remembering what this says. So let us prove this. So first, let us show that this is actually a 

Galois extension. Proof: so what are we doing here?  



To show that F alpha over F is Galois, we need to show that this splitting field for example of 

a collection of polynomials. So here, it is very easy to see what polynomial we are talking 

about. Let us just take the polynomial x to the n minus beta. Observe that so, what are the 

roots of this equation? So the roots of this polynomial, one root we know is alpha itself but 

then the other roots are just alpha multiplied by the various nth roots of unity, alpha zeta to 

the n minus 1 where zeta is just this nth root of unity. 
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So, these are the roots but observe, we made an assumption that F, the base field already 

contains zeta, zeta square zeta cube and so on. So therefore, observe that if you take F and I 

just adjoin F alpha to it, so maybe I should say this first. If I take F and I adjoin alpha to it, 

that is the same as adjoining alpha zeta, alpha zeta square and all the other roots as well, 

because zeta is already in F, since, zeta and its powers are already in the base field by 

assumption. 

So, adjoining just alpha will automatically give you all the nth roots, I mean all the n roots of 

that polynomial. So, what does that mean? That just tells you that F alpha is actually just a 

splitting field. Like this the definition splitting field should be the field generated by the roots 

of that polynomial over the base field.  

So this is a splitting field of this polynomial over the base field. Therefore it is Galois. Here 

characteristic is 0, so separability is not, it comes for free. It is normal therefore, Galois in 

this case. Good. Now, what about the Galois group? Where is the cyclicity of the Galois 

group going to come from?  



So, recall, you know we have looked at this in the various examples and so on. What are the 

possible possibilities for an element of the Galois group? So, take an element now, sigma in 

the Galois group of this extension. So, as always you know it is, it is determined by what it 

does to this generator. 

So if I know what psi does to alpha, so this uniquely determines if I specify this, this uniquely 

determines psi. You can work out what the images of the other elements are. Now, what can 

psi alpha be? Again, if you look back on our problems that we did, so what this says is that 

alpha can only be one of the roots of its minimal polynomial.  

In particular, it I mean here, I do not quite know maybe what the minimal polynomial is, I do 

not know that this is irreducible. The polynomial I chose little effects, but whatever it is, 

since alpha is the root of F of x, psi alpha must also be root of F of x. So what are my 

possibilities? I already know what they are; so only one of these. So now point is, so let us 

just define a map.  
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Stick the map. So I am just going to take the nth roots of unity 1, zeta, zeta square, zeta to the 

n minus 1. So this is I am calling this gamma n, the nth roots of unity, this forms group under 

multiplication. So what we now do is? We will define a group homomorphism between these 

2 groups. So this is a group under multiplication. What is the map?  

Well, we just said take any psi, it is uniquely determined by what it does to alpha. So and 

what can psi do to alpha? Psi has to map alpha to an element of the form alpha into some 

power of zeta, it should look like alpha zeta power k for some k between 0 and n minus 1. So 



now, what you do is you just map it to that k. So psi will map to zeta power k, where what is 

k? k is that element such that psi alpha is alpha zeta power k.  

This is the definition or if you if you wish to have something, you know which looks a little 

slicker; you just say psi maps to psi of alpha divided by alpha. That is really what this map is. 

Good. Now, we just have to check a few things. The claim is that this map is an injective 

group homomorphism. So claim: this map is an injective group homomorphism. So let us 

check the injectivity first.  
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If something maps to the identity, so first, I will check injectivity; if psi maps alpha, so if psi 

maps to be the identity of the group gamma n, what does that mean? It means that psi of 

alpha is alpha. If psi maps to 1, it means that psi of alpha is alpha. Therefore, you know that 

automatically means that psi must just be the identity on the entire field F of alpha. 

Because i is already identity on F and psi of alpha is also alpha, so psi must be identity. So 

that shows that this is an injective map definitely. But let us check that it is a group 

homomorphism. Now group homomorphism is, well suppose psi maps to zeta power k. I take 

another map psi prime which maps to zeta power k prime, psi n psi prime are elements of the 

Galois group, (())(19:53).  

Then what can I conclude? So what does this mean? In other words, psi of alpha is alpha zeta 

power k, psi prime of alpha, so let us compute what the composition maps show, psi 

composition psi prime. Well, it is value on alpha by definition is, I first applied, psi prime. Psi 

prime is zeta power k prime, which is psi of alpha into psi of zeta power k prime. 



Now, on the other hand, while I know something more; I know that psi of alpha is alpha 

times zeta power k and psi on zeta power k prime observe, zeta power k prime by definition, 

this this element here was assumed to be in the base field and psi acts as identity on the base 

field. So this just maps it back to itself. It does nothing to it. Psi of zeta power k prime, is it 

upper k prime? So the final answer therefore is alpha zeta power k plus k prime, which means 

that psi composition psi prime is going to be mapped to zeta power k plus k prime which 

means it is a group homomorphism because that is the group on the right hand side.  
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So we managed to prove both parts that it is an injective group homomorphism, which means 

that, the Galois group is isomorphic. So the Galois group, see there is an injective map to an 

abelian group. So observe that gamma n, the multiplicative group of the roots of unity, it is 

after all an abelian group there.  

And it is in fact cyclic. So, this is actually a cyclic group, this is cyclic generated by zeta,   

powers of zeta give you everything. So, this is a, this is really a subgroup of an abelian group, 

it is isomorphic to a subgroup, of a cyclic group. So therefore, this is also cyclic, therefore 

Aut of F alpha over F, you can think of it as it is isomorphic to a subgroup of a cyclic group.  

And the only subgroups of cyclic groups are cyclic; therefore, it is already cyclic. So that is 

the end of the proof. So, what we managed to show is that simple radical extensions are 

necessarily Galois and have cyclic Galois groups and now the key thing about you know, a 

tower of extensions or about expressing numbers in terms of radicals. 
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So, here is the proposition; if you can express alpha, if an element alpha is expressible in 

terms of radicals, then what it means is that then there exists, the proposition says, there 

exists at tower as follows: Q, it is called Q is L 0, L 1, L 2, L r such that alpha belongs to the 

last fellow Lr and each L i by L i minus 1 is Galois with an abelian Galois group.  

So, you might wonder that you know, did not we prove something more? Did not we already 

say that every simple radical extension is cyclic? Well, we did that is exactly what the earlier 

proposition said. That you know, the simple radical extension F alpha over F is, has cyclic 

Galois group, but we made an assumption that F contains all the nth roots of unity.  

So now we are trying to state it without that assumption and so there is just one little step that 

we need to do; which is we have to adjoin the nth roots of unity to our initial field Q. And 



once you do that, then everything works the same way. And that one step is what is going to 

give you an abelian group.  

So you can actually n fact, say there is one guy which is a billy and the rest are cyclic and so 

on, but for us abelian is all that will be required for our later arguments. So, Proof: by 

definition of expresibility in terms of radicals, what we know is that exists at tower Q equals, 

so now write a tower like this K naught, K 1, K r with alpha belonging to K r and each 

extension is simple radical, each K i by K minus 1 is a simple radical extension.  
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Now, the point is if instead of Q we had also a field which had all the nth roots of unity, then 

you know we could have concluded that the simple radical extensions are of have cyclic 

roots. So, what we will do is, we will just adjoin those nth roots. So let us assume that each K 



i is just, you get from K i minus 1 by adjoining some nth root, some alpha i, where let us say 

alpha i to the n i, it is the n ith root of some element in K i minus 1, for some n i, you can see 

assume they are all at least 2.  

So you get each successive step by adjoining some n ith root of an element of the previous 

field to that field. So, suppose this is the case. So I have these numbers n i, I know all of 

them, so I will just take their product and what I will do is, I will adjoin, so now consider. So 

I want to adjoin all the n ith roots of unity, I can do it in one step by just adjoining the nth 

root of unity, capital nth root. 

So let us do the following. Let us take the cyclotomic extension, Q zeta, where zeta is e to the 

2 pi by capital N. Observe that if you have this, this is the capital Nth root of unity. But this 

field also contains all the n ith roots of unity. So this is a cyclotomic extension. This is a 

cyclotomic field and further it contains all n ith roots of unity because capital N is a multiple 

of n i for all i.  
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Now, what does that mean? Well, that means now that I can instead of this tower that I had K 

naught, K 1, K r, I will just construct a somewhat larger tower. So now define a new tower as 

follows. Let us define L i as, so this is instead of K i minus 1, so let us do it in steps maybe. 

So I had Q, L naught containing K 1 is, I adjoin alpha 1 to it.  

Then K 1, I adjoin alpha 2, so this I called as K 2 and so on. So I keep adjoining successive 

elements. Now, let us just define L 0 to be Q. So, let us define L 0 maybe to be Q of, Q of 



zeta and now let us say L 0 is contained in maybe we should not call this as L 0. So this is 

one, one additional step that we need.  

So let us say I have so instead of the tower Q, Q, alpha 1, Q, alpha 1 alpha 2 and so on. This 

was the original tower that we had. Now, we will define a new tower in which we will also 

adjoin that zeta. So, now instead of Q look at; start with a larger field Q zeta and to Q zeta 

you adjoin alpha 1 to Q zeta alpha 1, you adjoin alpha 2 and so on.  

So, consider this new tower and of course, Q is contained in Q zeta. Now, I call these as my 

Ls, this is L 0, L 1, L 2 and so on. Now, this last step is some Q of have alpha 1, alpha 2 

alpha r, this is Q of zeta comma alpha 1, alpha 2, alpha r. So, this guy is well unfortunately 

because of the way my numbering meant this is L r plus 1 rather than L r.  

But does not; matter my key point finally is that I can construct a new tower in which all the 

n ith roots of unity are guaranteed to exist in the base field, they all exist in L 1 itself. Now 

we just use our previous proposition; by our previous proposition, observe that each step is a 

simple radical extension, observe that each L i over Li minus 1 is a simple radical extension   

and further, L i minus 1 contains all the n ith roots of unity definitely. 

So contains all the required roots of unity. So maybe we should just be slightly more careful 

here. So L i over L i minus 1, what is it really? L i is L i minus 1 adjoin. So there is a slight 

numbering thing here, L 2 is obtained by adjoining alpha 1. So it is L i minus 1 adjoin alpha i 

minus 1 now. So this is for i at least 2. 

Now, so what do I know? So, this is a simple radical extension and the base field which is L i 

minus 1 contains the n i minus 1th roots of unity, which is what I need for my earlier 

proposition. So these hypotheses are satisfied for earlier proposition.  
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So we conclude from our previous proposition that L i over L i minus 1 is Galois with a 

cyclic Galois group, cyclic is of course, abelian. Now, this only deals with extensions from 

the second stage onwards that is, this has cyclic Galois group, this has cyclic Galois group 

and so on. But we still have to worry about the very first step in the tower L 1 over L 0 but 

recall L 1 over L 0 is just a cyclotomic extension and we know what the group of a 

cyclotomic extension is.  

So, this is of course just a cyclotomic extension which we have studied. Therefore, it is 

Galois we know that with well what is the Galois group? It is Z mod, whatever it is capital N 

Z, the group of units of that ring. So therefore, it is definitely abelian. So the first step is some 

abelian group; the remaining steps are definitely cyclic, in fact. So that proves the theory.  

 


