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Let us do some problems on computing Galois groups. Compute the Galois group of the 

following Galois extensions. So the first problem; so let us look at the Galois extension Q 

root 5 over Q. So first we should ensure that this is indeed a Galois extension. In this case 

observe it is Galois. Well, that means two things; normal and separable. 

To check that it is a normal extension, we just have to realize that this field Q root 5 is 

actually nothing but the splitting field of an obvious polynomial. Look at the polynomial x 

square minus 5 with coefficients in Q. The splitting field of this, so what are the roots of this? 

Plus and minus root 5 and this field is generated by the roots of that polynomial.  

So, by the usual definition of splitting fields, this is this is exactly the splitting field. So it is 

normal and separable comes for free because the characteristic of Q is 0. So recall that if the 

base field is either characteristic 0 or perfect feel, then any algebraic extension is 

automatically separable. So what is a Galois group?  

So, let us see, observe that we know the cardinality of a group that is exactly the cardinality 

of its Galois group and in this case, Q root 5 over Q is of course, a degree 2 extension as we 

have seen before. Now, therefore, the Galois group must have two elements. So, well what 



are they? One is the identity of course and recall that in this case, root 5 and minus root 5 are 

the two roots of that polynomial.  

So observe that the roots or the elements plus minus square root 5 are the roots of the 

polynomial, irreducible polynomial x square minus 5 and as you have seen earlier, if you are 

given an irreducible polynomial and you have an extension generated by all its roots, then 

there always exists an automorphism which sends any given route to any other root of this 

polynomial.  
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So in other words, recall from what you have seen before, there exists an element sigma in I 

mean, this factor has also come up in a lot of the proofs. So, sigma in the Galois group such 

that sigma sends this route plus root 5 to the other root minus root 5. So this is, of course, 

clearly not the identity element and so, what this implies is that the Galois group then 

comprises two elements; one is identity, of course the other is this element sigma. So, it is it 

is isomorphic to the cyclic group with two elements. 

Good. Let us do something slightly harder. I will call this field K. It is generated by root 5 

and route 7 over K. Again, it is easy to see that this is Galois because this is the splitting field 

of well, you can say it is a splitting field of two polynomials, if you wish, x square minus 5 

and x square minus 7, or equivalently it is the splitting field of the polynomial x square minus 

5 times x squared minus 7.  



So you can also say it is a splitting field with a collection of polynomials and so that means it 

is normal and as before, separable is just because of characteristics 0. So let us see what the 

degree of this extension is, that will tell us the cardinality of the Galois group. So we can 

think of this extension as being obtained in two steps.  

So let us say we first adjoin root 5 and then we adjoin square root of 7 to this field. So maybe 

we will call this field as K 1 which is Q of root 5. Now the, what we already know is that Q 

root 5 over Q is of degree 2 and to that field K 1, we are adjoining an additional element 

square root of 7. Now we need to figure out what the degree of this extension is.  

So now I claim that this is also a degree 2 extension. Why is that? Observe that, what is the 

polynomial that square root of 7 satisfies? That we have to find out the minimal polynomial 

of square root 7 over the field 1; now, what polynomial does it satisfy? Well, let us say is the 

root of well, the obvious polynomial x square minus 7, which I can think of as having either 

rational coefficients or coefficients in K1. 

So definitely this square root of 7 satisfies this degree 2 polynomial, but maybe it also 

satisfies a degree 1 polynomial. We do not know that. In other words, could it happen that 

square root of 7 already lies inside K 1? If that happened, then of course, K over Q would 

only be a degree 2 extension. So therefore, so this implies that K over K 1 is, at most the 

degree of G, it is at most a degree 2 extension. 
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But claim: it cannot be a degree 1 extension. In other words this element that we adjoin, 

cannot already be inside this field Q root 5. Why is this? Well, this is sort of one of those nice 

little proofs like root 2 is irrational and so on.  

Suppose not, you would try and write if not, then you should be able to write square root of 7 

in terms of, that of the form a plus b root 5 where a and b are both rational numbers, because 

that is what elements of Q root 5 look like and then you sort of square both sides of this 

equation and conclude that, this is 7 equals a square plus 5 b square 2 a b root 5. 

Now, the only way this equation can hold true is if, well observe that root 5 is irrational. So, 

you know, all the other terms are rational, this implies that that term a B root 5 cannot occur. 

Since all the other terms of rational, this would be the only irrational term otherwise. Which 

means a or b is 0.  

But in that case, observe that this, this equation cannot hold. So I have already said this is 0. 

Now, if you look at what is left, 7 equals this, if I put a equal to 0 or b equal to 0, then I 

cannot find a rational solution for the other guy. But observe, if b equal to 0, then I conclude 

a square is 7. Which means that, you know, a is not as we know square root of 7 is not 

rational.  

So I am using some facts, that square root of 7 is not rational here. Similarly, if a 0, this will 

imply that b square is no 7, 7 by 5 and therefore b is, again b cannot be rational because b is 

the square root of 7 by 5. So we have used a couple of facts that square root of 7 and square 

root of 7 by 5 are not rational numbers.  

But that proof is the usual kind of proof, like proving square root of 2 is irrational. So that is 

basically what this claim involves. So we have shown this therefore, we conclude the 

following that K over K 1 is a degree 2 extension, K 1 over Q is the degree 2 extension. 

Therefore, K over Q is a degree 4 extension.  
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Now, what does that mean? That means that the Galois group K over Q should have 4 

elements. So of course the next question is what group of order 4 is it? What is the structure 

of this group? So let us try and find some elements in this group just like what we did in the 

earlier case. So recall you know, how do I find elements of this Galois group?  

Observe the following fact; any element in this automorphism group, Galois group is 

uniquely determined once I know what it does to the two generators square root 5 and square 

root 7. So observe sigma, any sigma in any element of the Galois group is uniquely 

determined by its actions on the generators.  

Why? Because any other element of the field just can be expressed as a polynomial in these 

generators and so sigma acting on that element can be uniquely computed. So let us see what 

are all the possibilities s5o therefore, we will try to list the possibilities for these two 

elements; sigma root 5, and sigma acting on root 7. So what are these? 

They are both elements of K. So, both sigma root 5 and sigma root 7 are elements of this field 

Q root 5, Q root 7 Q of root 5 comma root 7. Now, recall you know as we have seen before, 

the same fact that we used earlier that you know, the minimal polynomial of square root 5, so 

observe that sigma root 5 must be root of, so maybe we will just call these numbers 

something like, let alpha root 5 and beta denote root 7, then sigma of alpha must be the root 

of the minimal polynomial of alpha over Q.  



This is a minimal polynomial of alpha over Q. So, what does this mean? This means that and 

what is this minimal polynomial? It is the smallest degree irreducible polynomial that root 5 

satisfies and this case, it is easy to see, this minimal polynomial is just x square minus 5.  
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So, therefore we conclude that when I act sigma on this element alpha, it has to be a root of 

the polynomial x square minus 5. Therefore, this can only be one of two possibilities. So, this 

can either be root 5 or minus root 5. Now, similarly I also look at the other guy beta, observe 

that it is minimal polynomial over Q is just x square minus 7. 

I mean, we have to show this is irreducible, but we have done examples like this before. 

Now, the roots of this polynomial are plus or plus or minus square root 7. Therefore, 



analogously when it takes sigma, I acted on root 7, I can only get plus or minus roots 7. 

Those are the only possibilities just like here sigma of root 5 can only be one of these two 

numbers.  

So, how many possibilities are there in all? Well, there are two possibilities for sigma of root 

5, there are two possibilities for sigma root 7, between them you get only four possible you 

know, choices of sigma. So, what this means, in particular is that all these four must actually 

be elements of the Galois group because the Galois group we have already deduced has four 

elements.  

So, all these four possibilities must in fact be realized. So therefore the Galois group, the 

group is the Galois group of automorphisms of K or Q has the following four elements, 

which are determined by what it does to each of them. So one of them is root 5 it says, root 5 

goes to minus root 5, root 7 goes to plus root 7.  

So we will call this something sigma, root 5 goes to plus root 5, root 7 goes to minus root 7, 

call this tau and then there is the composition of sigma tau which takes both of them to the 

negatives and then there is the identity map of course. So these are the four elements, which 

belong to the Galois group and this should be familiar. 

I mean, observe that each of them sigma square, tau square are both identity, if you apply 

them twice sigma tau and tau sigma the same, does not matter which order you do it and this 

is exactly the set of relations for the Klein four group or if you wish, it is the direct sum of 

two copies of said Z mod 2 Z.  
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Good. So let us do another one, slightly slightly more complicated which is, let us take the 

base field again to be Q and let us take the polynomial x cubed minus 5 and let K denote its 

splitting field, splitting field of this polynomial over the base field cube. What does that 

mean? Well, I have to just take the roots of this polynomial; I know what the roots are in the 

complex numbers.  

So cube root of 5 and cube root of 5 omega, cube root of 5 omega square, where omega is 

primitive cube root of unity. Maybe I will give cube this this real cube root of 5. So this is 

something, this as a real cube root of 5, I call it alpha. Observe, this is also the same as you 

first had adjoin alpha then you adjoin omega to it separately because if I have alpha and I 

have alpha times omega, I can get omega from it.  

Good. So what do we know about this this field? Again, it is Galois because it is the splitting 

field already. It is separable, because again it is characteristic 0. Now, let us try and figure out 

what the degree of this extension is. So, I start with Q and I need to go all the way up to K, 

which is Q of alpha comma omega. 

Again, I will think of it as being realized as successive tower of extensions. So I first adjoin 

alpha; now what polynomial does alpha satisfy over Q? What is the minimal polynomial? So 

observe, alpha satisfies alpha is the root of the polynomial x cubed minus 5 and in fact, we 

know that this polynomial is an irreducible polynomial, it is irreducible over Q. 



For example, by using the Eisenstein criterion so, recall the Eisenstein criterion requires a 

certain prime number P that you use to prove the irreducibility. Here you can take the prime 

to be 5. So, this prime divides the well it does not divide the leading term, it divides the 

constant term and the square of this prime does not divide the constant term. Those were the 

conditions you needed for the Eisenstein criterion for irreducibility.  

So, alpha is the root of this cubic polynomial which is known to be irreducible over Q, which 

implies that this extension here must be a degree 3 extension because the degree is the same 

as the degree of the irreducible polynomial that alpha satisfies. Now, what about the other 

one up here, we need to look for what is the polynomial that omega satisfies over this field Q 

alpha. So, this field we are adjoining omega to the field K 1 now. 
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Now observe omega satisfies, well is the root of certain quadratic polynomial. So recall the 

cube root of unity satisfies this polynomial and this is, well it has rational coefficients but I 

can also think of the coefficients as coming from this larger field K 1. So omega satisfies a 

quadratic polynomial with coefficients in K 1 which implies that this, this extension here, so 

that I do not know at this moment whether this is an irreducible polynomial or not but 

whatever it may be, I know that this extension is utmost degree 2.  

Now, the claim is this is in fact irreducible. This polynomial is irreducible. So this is 

irreducible. In even over this larger field K 1 x, why? Because if not, if it is not irreducible it 

has to factor into a product of two linear factors. This is after all quadratic; if not then it 

would imply that, then both roots belong to K 1.  



So, then it will imply in particular that omega comes from K 1. Now, which is not true 

because remember K 1 is just Q adjoin a certain real number, which is alpha in this case, so I 

adjoin alpha; the answer is definitely real, so subfield of the real numbers but omega is 

definitely not a real number. We know what omega is, it is got a certain non-zero complex 

part. So, this is not real. So this is a contradiction.  

So, this establishes that omega does not belong to the field K 1 therefore, this polynomial is 

irreducible. Therefore, score back we can remove this less than or equal to symbol. This is 

exactly a degree 2 extension. So, all told therefore it is a degree 6 extension. Therefore, K 

over Q is degree 6 and so, this must also be the cardinality of the Galois group. So, there 

should be 6 automorphisms of K which fix Q pointwise.  

So, let us look for those 6. Let us try and figure out just like we did earlier what those 6 must 

look like and as before we will try to analyse; so, observe as before that if I give you a sigma 

in the Galois group, is determined uniquely by its action on the 2 generators. In this case the 2 

generators were; cube root of 5 which is alpha and the cube root of 1 the complex cube root 

of unity which is omega. 
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So, let us see what these things have to be. So, observe for a start that what can sigma of 

alpha be? What are the possibilities? Sigma of alpha can only be one of the three possible 

roots of the minimal polynomial of alpha. So possibilities; sigma of alpha has to be one of the 

three roots of the minimal polynomial of alpha over the base field. Again, what was that 



minimal polynomial? We already said this it was x cube minus 5 and so what are the three 

possible roots of that equation? 

They were just cube root of 5, cube root of 5 omega and cube root of 5 omega square. So, 

there are three possibilities for alpha can map. There are three possibilities for sigma of alpha. 

It can either go to alpha, alpha omega or alpha omega squared. Now analogously we ask what 

about the other generator? What can sigma of omega map to? 

By the same token now, we need to ask, what is the minimal polynomial that omega satisfies 

over Q? So, I have this this element omega in K, omega satisfies some irreducible polynomial 

over Q, sigma must map omega to one of the roots of that irreducible problem. So it is one of 

the roots again similarly, it is one of the roots of the minimal polynomial, let us call it m 

omega of x. This is the minimal polynomial of this over Q.  

Now, what is that? Well, it is actually the same polynomial x square plus x plus 1. We 

already know what polynomial omega satisfies over Q even. This is just x square plus x plus 

1 and this is of course, irreducible for the same sort of reason that we gave earlier. It is 

irreducible over K over Q as well as over K 1 for the same sort of reason. If not, then omega 

would have to be an element of Q , which we know for sure is not the case.  

So therefore sigma of omega can either be omega or the other root of this polynomial which 

is omega square. Now again, there are how many possibilities for sigma? It can map alpha to 

one of these three choices, it can map omega to one of these two choices, put together there 

are six possible choices maximum. 
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All choices need not always be consistent but these are the maximum possible choices. There 

are only six of them. But we already know that the Galois group has exactly six elements, 

which means that all six of these possibilities must actually be, you know, really possible. 

They must arise. Therefore, what we conclude is that all six possibilities do arise when you 

look at the possible elements of the Galois group.  

So let us, let us write out, you know, these six elements. So let me like we did earlier, let me 

say, alpha goes to alpha, let us say omega goes to omega square. So let me give this map a 

name. It is called the sigma. Now, let us look at another one; alpha can go to alpha omega, let 

us call this tau and omega goes to omega. 

Then, let us look at what are the other possibilities. So the remaining elements can more or 

less be obtained by looking at various compositions of sigmas and taus. Now, just with this 

sigma and tau observe many things that if I, for example, compose sigma with itself, what is 

sigma composition sigma? Well, this map which we will call sigma square, takes alpha to 

alpha to alpha. 

I am composing it twice. Omega goes to omega square and when I compose it once more, 

what should it do? Well, omega squared so it goes to omega squared, squared when I apply 

sigma again but that is omega to the four which is omega. Therefore, what do I conclude? 

Sigma square is therefore just identity map because it maps both alpha and omega to 

themselves.  



Of course, it maps Q, Q to Q as pointwise identity. Now, similarly, if you compute tau cubed, 

you will notice that, it is again the identity map and if you compute sigma tau sigma inverse, 

you will notice that this is tau square. So I am sort of leaving these two here as exercises for 

you to compute. So, what we have generated are well 5 elements I suppose. 

Sigma tau, well not quite, we have only looked at sigma and tau as elements and then we are 

looking at the various relations that they satisfy. So, observe that this this final equation here 

tells you that this group is non-abelian because sigma tau is not the same as I mean, sigma tau 

sigma inverse would have given you tau, if sigma and tau commuted with each other.  

So, this implies that sigma and tau do not commute and of course, all this fuss is more or less 

to say that, you know, this is a non-abelian group of order 6 and you know, the relations are 

probably familiar already. This is the group S 3 or if you wish, it is the dihedral group with 6 

elements. It is another way of saying the same thing.  

So, observe that the 6 elements are exactly the automorphism group of K over Q in this case 

is just a symmetric group S 3. You could write out all the 6 elements if you wish. Its identity 

tau, tau square, then that is sigma, sigma tau and sigma tau square. They will realize these six 

elements will give you all the six possibilities, alpha mapping to one of the three alpha, alpha 

omega, alpha omega square omega mapping to one of the two possibilities omega or omega 

square.  
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Now, recall that you know, what are the subgroups, look of this one of the subgroups look 

like? So, let us try to bring in the fundamental theorem of Galois Theory here. So, what are 

the subgroups of S 3 look like? So, let us, well I just wrote out all 6 elements and it is easy to 

see that this for example, is a subgroup of order 3. It is the only subgroup of order 3, the 

alternating group and there are a few subgroups of order 2, identity sigma, identity with 

sigma tau, identity with sigma tau square.  

These are 3 subgroups of order 2 and that is it. So let us write out all the possibilities. There is 

the identity and just call it E in this case, then there is maybe we should just write it as id, 

says the identity subgroup. Then there is identity sigma, sigma tau, identity with sigma 

square. These are the order 2 subgroups and then there was an order 3 subgroup identity tau, 

tau square and then finally, the full group itself just the group S 3 in this case.  

Now, let us draw the inclusion relations among them. So, this contained this, this is contained 

in this. So, when you draw a line, it just means that the subgroup on top is contained in the 

subgroup on the bottom. So this is the partial partially ordered set, whose elements are the 

subgroups and the partial order is just one of containment.  

So, I have drawn them here. Now, what is the fundamental theorem of Galois Theory say that 

this is in one to one correspondence with the subfields of K. Well, I should actually say the 

intermediate subfields of this extension; meaning subfields which lie between K and Q. So let 

us see what are the various possibilities? We already know what this map is.  



So given a subgroup recall what the fundamental theorem of Galois Theory says? If I give 

you a subgroup H, you are supposed to send it to the fixed field of H, the elements of K, 

which are pointwise fixed by every element of H. So, now I know that some things are 

obvious. If I take the identity then the identity fixes every element of K that goes to K.  

If I take S 3, then the only elements of K fixed by all elements of the Galois group that is 

going to be the base field, so that was the definition of Galois extension, if you wish. Now, I 

have K and Q at the two ends and then I have, there should be some subfields corresponding 

to these four subgroups. So, let me call it K 1, K 2, K 3 and K 4. 

So, again I should have now inclusion relations in the same way. I should be able to find 

subfields like this, which are all, which have the same inclusion relations. So, recall this is an 

inclusion reversing bijection between these two sets. So, the question is what are these K 1, K 

2, K 3 and K 4? Let us try and figure them out. They are the fixed fields.  
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Now, what is K 1? K 1 is by definition, the fixed field of the subgroup whose elements are 

identity tau and tau square. Now, what do we know? Well, what is tau? I sort of said what tau 

does; it maps alpha to let us write it out again. Alpha goes to alpha omega, omega goes to 

omega. So, definitely omega is fixed by tau because omega maps to itself, omega square also 

maps to itself, I mean any multiple of omega will map to itself, any power of omega sorry, 

omega is also fixed by tau square.  



So, observe tau and tau square both fix omega. So, one thing we know for sure is that Q and 

omega are both inside this field K 1. Now, what is Q omega? Well, what is the, what is the 

degree of Q omega over Q? So, recall we have already said this omega satisfies a degree 2 

polynomial over Q. So, this is just a degree 2 extension. 

Now, we will soon see that it is actually equality there. So let us move on to the other one. 

So, what is K 2? K 2 is the fixed field of identity with sigma. Now, identity with sigma is 

what are the possibilities sigma maps alpha now to alpha maps omega to omega square. So 

by the same reasoning as before, definitely this fixed field contains Q and it contains alpha. 

So it contains the field Q of alpha and how big is that Q alpha over Q is as we saw earlier. 

Alpha satisfies a degree 3 irreducible polynomial. So this is a degree 3 extension. So now let 

us go back and use another part of the fundamental theorem of Galois Theory. So recall 

again, fundamental theorem says the following. If I have the subgroup H, then the cardinality 

of H is actually the same as the degree of the extension K over K H. So this was one of the 

parts of the fundamental theory.  

So let us use this now because it gives us some valuable information. So, what does it say? 

Let us look at the subgroups. So, these are the three subgroups here whose cardinality is 2. So 

identity sigma has cardinality 2. So, it says that K over K 2, this extension must have degree 

2. This is a subgroup of cardinality 2. So, this extension must have degree 2 and similarly, 

this extension must have degree 2. 

Similarly now, this is a subgroup of cardinality 3, therefore this extension must have degree 

3. So that is what we conclude. Now, observe that the total extension, which is K over Q, that 

we already know what its degree was, that was the original Galois extension whose degree 

was 6. So that allows us to sort of conclude that in order to calculate the degrees of these 

other extensions by using the tower property. 

So for example, I go from Q to K 1 to K, the total degree must be 6. So, therefore this must 

be 2. Now, total must be 6, so these 3 must all be threes. So, I can work out all the degrees of 

the extensions by using this other part of the fundamental theorem. Now, let us go back and 

revisit what we know about K 1, K 2 and so on. So K 1 Q, I know is degree 2. Now, what do 

I know about K 1? I know that K 1 contains Q omega certainly. 



K 1 is at least as big as Q omega but Q omega over Q is already degree 2. So by degree 

considerations by degrees, I (compute) I conclude that K 1 cannot be any bigger than Q 

omega. That is about it because already I have gotten a degree 2. By the same token, I take K 

2 which is, it contains Q alpha for sure. But the degree of K 2 over Q is 3. 

So, I have already gotten 3. I cannot get anything larger. So this can only be Q alpha and 

similarly, if you look at the other two fields K 3, similarly will be Q of alpha omega and K 4 

turned out to be Q of alpha omega square. So these are all the degree 3 extensions. So what 

we have really is, you know, we have sort of looked at the entire Fundamental Theorem of 

Galois theory in this case.  
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Good. Now, let us do one last computation and this time not over the field Q but rather over a 

finite field. So compute the Galois group of the extension F p n over F p. First, let us check 

that this is Galois again. So, we need what? Normal and separable; normal is easy because 

recall F p n more or less is the splitting field. This is how it was constructed if you wish; you 

just take this polynomial, x raised to the p to the n minus x and in fact, all the solutions, the 

roots themselves form a field.  

So for sure, it is the splitting field of this polynomial. This polynomial splits completely over 

this field. So therefore, it is normal and separable recall again comes for free in this case, 

because we had shown that F p being a finite field is perfect. Therefore, any algebraic 

extension of a perfect field is automatically any algebraic extension of F p is automatically 

separable. So it is Galois for sure. So the question is what is the Galois group?  



Well, we know the cardinality F p n over F p recall is just an extension of degree n. 

Therefore, the Galois group the automorphisms which fix  F p, this must have cardinality n. 

So again, we could try and find some elements of this Galois group. Now, you know, since 

we did not quite construct F p n as F p adjoin with some elements. Rather, we did something 

more indirect; you know wrote it as a splitting field of some polynomial and so on.  

So we do not quite know given an element of F p n. What is, what exactly is its irreducible 

polynomial and so on. So the sort of analysis we did for the first three problems will not work 

here. But fortunately, we actually have some readymade elements of the Galois group. So 

recall, when we talked about perfectness, and so on we introduced what we call the Frobenius 

map. 

So what was the Frobenius? Well, because F p is perfect, it is automorphism for F p three n, 

in fact. So recall the Frobenius automorphism of F p n is just a map. Let us call it phi, which 

takes any element to its pth power. We had shown that this is a field automorphism because F 

p n is finite. This is, I mean, it is always injective because F p n is finite; this is surjective as 

well. 

So it was an automorphism. So here is at least one element phi. It is an automorphism of F p 

to the n. Observe that if I take an element a which comes from the base field, F p then phi of a 

is actually equal to a because remember, elements of F p, they satisfy a power is a. So every 

element of F p certainly satisfies this equation.  Now, so why did I say this, this therefore 

means that phi is an element of the Galois group. It not only is an automorphism of F p n, it 

also fixes every element of the base field F p.  
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Now, the claim is that this element phi that we have constructed let us try and compute its 

order in this group. It is an element of the Galois group. What is its order? The total order is 

n. So the order of this element in the Galois group can, has to be some divisor of n but the 

claim is that the order is exactly n. In other words, the Galois group is cyclic.  

So what does that mean? I have, here is what I am going to prove that if I compose phi with 

itself, k times. Suppose I compose phi with itself k times to get identity, then this means that 

you know, this cannot happen if k is smaller than n. So let us just say this. This cannot be the 

identity. If k is any number, that is smaller than n k times.  

Why is this? Well, let us try to see what this would mean. So if phi to the k is identity, so phi 

to the k is just this composition. What does this mean? This means that, how do I apply phi? I 



keep you know, so I acted on an element phi to the k acting on an element a is just a to the p, 

the whole to the p to the whole to the p and so on.  

So it is a to the p square, a to the p cubed etc. So this is just a to the p to the k. So if this is 

equal to a, so this is on the one hand, the identity map is just a. So these are both equal to 

each other implies that so this is for every element a of my field F p n. Therefore, what I am 

claiming is a to the p to the k is equal to a for all elements of F p n. 

But observe that, if you looked at this polynomial x to the p to the k minus x, consider this 

polynomial. What is the degree of this polynomial? It is just p to the k and what we are 

claiming is that this polynomial has p to the n roots because every element of F p n is root a 

root of this polynomial and now, what we are concluding is that this polynomial has p to the 

n roots in this extension field F p n. 

This is clearly impossible if n is bigger than k. you can only have p to the k possible roots 

maximum. You cannot get p to the n, where n is bigger than it. So that is the contradiction. 

So that tells you that phi to the k cannot possibly the identity if k is strictly smaller than m. 
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So what this means is and of course phi to the n is identity is clear. Also, observe more or less 

by the definition of the finite field, phi to the n is surely identity. Since a to the p to the n 

minus a is 0 for all a in the finite field. So the conclusion is that the Galois group, the 

automorphism group of F p to the n over F p is exactly the cyclic group generated by phi. 



What are the elements; identity, phi, phi square and so on phi to the n minus 1. So, these are 

the elements of the Galois group and again sort of by similar token, one can work out the 

fundamental theorem of Galois Theory. So, will tell you that the subgroups of this group are 

in one to one correspondence with the intermediate subfields and if you sort of see, what are 

the sub groups of a cyclic group? 

They can only look like; they are also cyclic generated by some element phi to the d, phi to 

the n, where d is some divisor of n. so you can look at these groups and so if you take this, 

maybe we should call this something H sub d. So, what are the possible sub groups? They all 

look like this. H sub d, where d divides n and you can ask what is the fixed field of this 

group? 

So, this is my F p n and I need to ask, what is the fixed field of this sub group? By definition, 

it is all those elements which are fixed. It is enough if it is fixed by phi to the d then it would 

be automatically fixed by all the others. So this is almost like the calculation we just did. So 

what is this? This is just all those elements a such that a to the p to the d minus a is 0.So, it is 

all those elements of F p n which satisfies this property. 
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And recall, that from the earlier discussion of subfields of finite fields and so on, this 

collection here is actually is, so this H d, the fixed field is, it is the copy of, it is the unique 

copy of the finite field F to the p to the d that lives inside F to the p to the n. So recall, go 

back and look at that earlier lecture, for every device d of n you can find a unique copy of F p 

to the d inside F p to the n and how do you get that copy?  

You just take those elements of F p n which satisfies, which satisfy this exact equation, a to 

the p to the d minus a is 0. Good. So that sort of ties it up nicely with what we have seen 

earlier and you know you can also draw for example, the same sort of diagram which we did. 

You can see, what are the device a relation and so on and similarly you can get something on 

the other side, which tells you how the various sub groups live inside F p n.  



So I am going to leave that as an exercise for you to figure out. So these lines here are just 

going to go between two numbers d and d dash whenever d divides d dash. That is going to 

be the, those lines there.  

 


