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Let us talk about finite Galois extensions. So recall, we have proved Artin’s theorem and 

these are all now some nice consequences. So here is a theorem, which characterizes finite 

extensions, which are Galois. So let, K over F be a finite extension. Then K over F is Galois 

extension, if and only if the following degree criterion holds that the cardinality of the degree 

of extension K F is the same as the cardinality of the group of F automorphisms of K.  

So, let us prove this. So, recall what the group of F automorphisms was. So, Aut K over F 

just meant, take all automorphisms of K which are identity on F and this of course appeared 

in our, so let me just call this group gamma. So this appeared in our earlier characterization of 

general Galois extensions.  

Recall that an extension is Galois if and only if the fixed field of this group of automorphisms 

is the base field itself. So we will come to that, the course of the proof. So I have called this 

as gamma. So the first observation is that, observe the finiteness of this extension implies the 

finiteness of this group.  

So why is this true? Well, what does a finite extension look like? So here is one way of 

thinking about a finite extension. I start with the base field, if there is at least one element 



outside the base field, which belongs to my field K, then what I do is I adjoint that element. 

So if I can find one element in K which is not in F I adjoint it. 

I get an intermediate field F of alpha 1. If F alpha 1 is still not everything, there is something 

more than I can adjoint 1 further element. I pick an element outside and adjoint and so on. So 

I keep going. Now, at every step, the extension that I have created has degree at least 2, like 

the degree of this extension is at least 2 because I have chosen alpha 1 that does not lie inside 

F.  

So at every step, I have at least a degree 2 extinction and the overall extension is finite which 

means that I cannot keep going on and on like this forever because recall that the degrees are 

multiplicative. So K F is just the degree of the product of the degrees of all the intermediate 

extensions. So therefore, this process has to stop. So, this means that in particular K is just 

obtained from F by finitely many adjunctions.  

So, this has looked like alpha 1, alpha 2, alpha s for some finite value s could be 0 even if K 

and F are equal. So, in other words, there are there are no there are no alpha s s if K and F are 

equal. So, what does that mean? So, if I can obtain K from F by finitely many adjunctions, 

then the effect of an auto morphism, so observe now that sigma from K to K so, if sigma is an 

auto morphism of K over F. 
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This sigma is uniquely determined once I tell you what it does to the alpha x. So, sigma is 

uniquely determined by the values of sigma by the values sigma evaluated on these 



generators. Why is that? Well, because sigma recall, sigma on F is already the identity I know 

how to evaluate sigma on elements of F. And then on other elements once I know the value 

on sigma alpha 1, this determines sigma uniquely on the first extension. 

So, I just argue extension by extension. I know the value on F, its identity and I know the 

value on the generator alpha 1. So, that uniquely determines the value of sigma on F alpha 1. 

So, that that is like sort of an easy exercise and since I know the value on F alpha 1, then I 

adjoint just one more element and the value on of sigma on alpha 2 together with its value on 

the field F alpha 1 will generate, will tell me how to define, will uniquely determine sigma on 

F alpha 1 alpha 2 and so on.  

So, I just go extension by extension and so, the (value) you know what it does is it determines 

sigma uniquely on K. All values on K are uniquely determined by just knowing the values on 

the generators, but observe that the possible candidate values for the generators are only 

finitely many.  

In other words, so observe or recall the following fact; if I had an element alpha in this 

extension K over F then and say and let m alpha denote its m alpha of x in F x be its minimal 

polynomial. So, this is the the minimal irreducible polynomial satisfied by alpha with 

coefficients in F, then so, let then observe for all sigma which is an auto morphism of K 

which fixes F sigma of alpha is also a root of the same minimal polynomial. 

Sigma of alpha is a root of m alpha of x. So, this argument has occurred many times before 

that if alpha is the root of some polynomial then sigma of alpha is also the root of the same 

polynomial over the base field, because sigma fixes the coefficients from the base field. So, 

given this, what does it imply in particular? m alpha of x only can have finitely many roots in 

K.  



(Refer Slide Time: 07:28)  

 

 

This means that sigma of alpha is only one of finally many possibilities. So, this belongs to 

the set of roots of m alpha in K. So, each sigma alpha i has finitely many choices. So sigma 

alpha 1, I can possibly map it to one of the many possibilities. So, sigma alpha 2, similarly 

there are only finitely many choices and so on. So, what does this mean? Finally, it means 

that, so maybe I should say alpha 1 can map under sigma to only one of the many choices and 

so on.  

So, this finally implies that the possible values of sigma itself is only finitely many. So, this 

in particular implies that the possible choices for elements sigma of gamma itself is only 

finitely many. So, this is just the simple finite observation that if the extension is finite then 

the group of automorphisms which fix the base field is also necessarily a finite group. 



Now, that means that we can now apply Artin’s theorem. So, observe mod gamma is finite 

implies Artin’s theorem applies and what it Artin’s theorem say? It said that if you take K 

and gamma was any finite so, what was the hypothesis here? Gamma needed to be any finite 

subgroup of the group of automorphisms of K.  

So, in particular we have taken gamma to be Aut K F, that is known to be finite now case and 

Artin’s theorem says that if you look at K as an extension of K gamma so, then the theorem 

says that this extension has degree exactly equal to the cardinality of gamma. So, this is 

exactly Artin’s theorem.  

This is the (concept), this is the assertion of Artin’s theorem. But in our case, gamma is 

something special. Gamma is actually the group Aut K F, which means it is the set of all 

automorphisms of K, which leave elements of F fixed pointwise. What does that mean? Well, 

that says that K gamma actually contains F.  

So this means in particular that F elements of F certainly lie inside the fixed field of gamma. 

That is how gamma is defined in this case. So that is, that is our case. So, what is this say? 

This says then, that this extension has degree mod gamma according to Artin’s theorem. So, 

well what is it that we want to conclude? 

So, conclusion is that the full extension the overall extension from K to F also has degree 

mod gamma if and only if the extension on the bottom K gamma F has degree 1 because 

Artin’s theorem already told you that the top bit has degree equal to mod gamma. So, this is 

what we have concluded, but this last conclusion just says that K gamma is equal to F.   

A degree 1 extension is just the base feel itself. Now, K gamma equals to F should be a 

familiar statement. So, recall this is exactly one of the characterizations of Galois extension. 

That if (gamma) if I take the group gamma to be the auto morphism group of K over F and I 

look at the fixed field of that group of automorphisms then it should be exactly F.  

So, this recall from our earlier theorem on characterization of Galois extensions says exactly 

that K or F is gamma. So, that proves this rather nice characterization of finite Galois 

extensions. So, this is yet another characterization now, purely in terms of the degree of the 

extension, says that the extension degree must be the cardinality of the group of F 

automorphisms of K. 
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Now, let us also write out another corollary, sort of along the same lines of Artin’s Theorem. 

So, let me call this proposition, this proposition says the following; let K be any field and 

gamma a finite subgroup of the group of automorphisms. This is the same hypotheses as in 

Artin's theorem. Then two statements number one; K over K gamma, because this is a finite 

extension because Artin’s theorem tells you that it is the cardinality, the degree of the 

extension is the cardinality of gamma.  

But we want to claim more than that. This is finite Galois extension, finite is already done by 

Artin. So, we are just trying to prove the Galois bit now. And statement 2; the group of 

automorphisms of K which leave K gamma fixed is exactly gamma. So let us prove this. So 

let us give this a name. Let us call this fixed field as K gamma and let us call this group of 

automorphisms as G.  

So, we need to say something about F and G. This theorem the two parts; so, observe that 

with these definitions, what do we know that firstly, that F so, F is K gamma so, observe G is 

definitely more than gamma. So, gamma is a sub of G. So observe, gamma is actually a 

subgroup of G. Why? Well by definition because let us see if I take elements of gamma then 

by definition they fix the elements of K gamma more or less this is by definition.  

Since elements of gamma certainly fix K gamma pointwise. That is how K gamma is defined 

and what is G? G saying; take all automorphisms which fix elements of K gamma pointwise. 

So the original elements of gamma are certainly part of this part of this. So, gamma is 



definitely a subgroup of G. But what does that imply in particular? It says that the fixed field 

of gamma, so gamma is smaller than G. So the elements of K which are fixed by gamma is 

definitely a superset of the elements of G elements of K, which are fixed by G.  

So, when you have a larger group, it fixes fewer elements in general. So, I know this K 

gamma contains K G, but here is something that we know, what is G? G is just the space of 

all automorphisms of K which fix F. So, remember F is the same as K gamma for me. So, this 

just says that elements of G certainly fix F. 

So, the fixed field of G certainly contains F in our case but so, you know, so what is on the 

left hand what is on the other end are actually the same. This is also F and that is also F. So, 

we conclude from this that the fixed field of this potentially larger group G is actually the 

same as the fixed field of the smaller group gamma.  

So, this is the first, this is the first conclusion and further; this statement here that K G is 

actually equal to F. What does this say? Just like we did in the previous part, this just says 

that the fixed field, so what is G? G is exactly the group of automorphisms of K over F. And 

if the fixed field of this group is F, this exactly means that K over F is Galois is the, this is the 

equal and characterization. 

So this is our previous theorem, characterization of Galois or Galois extensions, in terms of 

the fixed fields. So that is proved the first part because finite, we already knew. So now let us 

do the second part. We need to check that the auto morphism group is exactly gamma. So, 

what do we know?  
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Part to prove the second part. So, we therefore know so because we have just shown it is 

Galois. So by our previous theorem, that we just which characterizes finite Galois extensions. 

We know the following that the degree of the extension must be equal to the cardinality of 

the Galois group. So this is cardinality of Aut K over F.  

But well recall, K over F, on the other hand is K over K gamma. That is how I first defined. 

And this by Artin’s theorem K, over K gamma is mod gamma by Artin’s theorem. So what is 

this say? Well, it says G and gamma had the same cardinality and G contains gamma to begin 

with. Here is that gamma subset of G.  



So this means that gamma contains, gamma is a sub of G and they have the same cardinality 

means they must be equal to each other. So the key point here is really the following; that we 

a priori, potentially have a larger group G, it could be bigger than gamma, but the fixed fields 

are the same. That is what we are able to prove from this.  

And the fact that they have the same fixed field then also implies this case that the groups 

themselves are the same. So all of these arguments, so this is sort of a, maybe a small 

argument split out of this broader thing of Galois theory. We will soon see that this, forms 

part of what is called the fundamental theorem of Galois theory. So that is, that is going to be 

what we will do next. 


