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In the previous video we proved one half of our Artin’s theorem. So, recall the statement; it 

says if K is a field and if gamma is a finite subgroup of the group of field automorphisms of 

K, then K over the fixed field K gamma is where it is a finite extension of degree equal to the 

cardinality of gamma. And we proved the inequality which showed that the cardinality of 

gamma is less than or equal to the (cardinal) the degree of the extension K, K gamma. What 

we will do this time is to prove the other half. 
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So, I now claim that the reverse inequality holds, in other words that the cardinality of 

gamma is greater than or equal to the degree of the extension F, remember is the fixed field 

of gamma. And how are we going to prove this? We will prove the following, we will prove 

that any set of linearly independent elements, any set of linearly independent elements of K 

thought of as a vector space, as a vector space or F.  

So, maybe to emphasize the field F I will say F linearly independent elements. So, I think of 

it as case a vector space over F and if we show that any set of linearly independent elements 

has cardinality at most, the cardinality of gamma. And now, if you show this, then you are 

done, because this would imply two things number one, that K F, K over F is a finite 

extension, because otherwise there will be infinitely many linearly independent elements 

possible.  

Secondly, the dimension of this vector space is at most the cardinality of gamma because we 

just take a basis of this vector space, that is a set of linearly independent element and that can 

have cardinality at most gamma. So let us try and prove this statement. So, let us begin with a 

set of let alpha 1 through alpha m be a set of linearly independent elements.  

So again, let me say F linearly independent elements of the vector space k thought of as a 

vector space over F. And of course, I will assume m is at least 1 here. So, some finite, some 

finite number of m. Now, let us show that, so maybe I should say any finite set. Now, what 



do we know since this is linearly independent from this we can get many other linearly 

independent sets as follows.  

Since each sigma and gamma fixes, so you pick elements sigma and gamma, since it fixes the 

field F pointwise. In other words, since it is a fixed field, sigma acting on an element of F 

gives you back that same element. We conclude the following that the collection sigma alpha 

1, you just apply sigma to all these earlier fellows.  

Alpha m, this is also F linearly independent, is also an F linearly independent. So just use LI 

for linearly, it is an F linearly independent subset of K. So, we have manufactured in some 

sense many linearly independent subsets starting with the first one. 
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And now comes the sort of important step non-obvious step. Let us define maps as follows. 

So, we have a bunch of linearly independent sets and we are going to define maps from K m 

to K as follows. So I will call this map as psi, but this map will also depend on the sigma as 

follows; so given an M tupple beta i have numbers in K, I will map this to the corresponding 

linear combination of the linearly independent set sigma alpha i.  

So remember sigma alpha i is linearly independent. And I just map the collection beta i to the 

corresponding linear combination. So, observe there is therefore, this is maps, one for each 

element of gamma. Now what are the key properties of these maps? Well, the first property 

the sigma alpha i are linearly independent thought of as an over the base field F. So, the linear 

independence tells you the following; if you look at the kernel of this map. 



So if I ask what is the kernel of this map? In other words, what is the collection of m tupples 

which maps to 0, i equals 1 to m. Well, in general, there will probably be many of these, but 

if we take this to be the kernel, then observe the following; the kernel of sigma psi, psi sigma 

does not intersect F power m. In other words, if all the beta is come from F, then this linear 

combination can never be 0 unless all the beta is are 0 themselves. 

This is exactly linear independence. So, by the F linear independence of the sigma alpha i. 

So, the beat is cannot all simultaneously come from the base field F. Property two; observe 

that psi sigma is actually a K linear map. So, what sort of map is this?  You can think of it. So 

now, the K to the n and K. If I think of them as vector spaces over K and then psi sigma is 

just a linear transformation of these K vector spaces. So this is K linear. In other words, if I 

add two guys, it will become the sum.  

So if we take beta i plus the tupple beta i dash, which means component wise addition, then 

reduce give me psi on beta i plus i sigma, beta i dash. And I mean, that is more or less 

obvious, because you will substitute in place of beta i, you will have to substitute beta i plus 

beta dash and so it is split up into two pieces.  
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And similarly, if I replace beta i by a multiple of beat i, in fact, a multiple coming from K 

scalar multiples that second property, if I apply psi sigma to lambda times the beta is. So, let 

me just verify this psi sigma, this is just the m tupple lambda beta i by definition and this is 

just lambda beta i times sigma alpha i. This is i goes from 1 to n. 



So, observe this product is taken in F lambda and beta i are in F. So, lambda beta i is another 

element of F. Sigma alpha is of course, an element of F and so now by the associativity of the 

multiplication and the field, I can just pull the lambda out. So, you will give me beta i sigma 

alpha i. Can so this is true, in fact, for all lambdas coming from the field K.  

So, this map is a K linear map. It satisfies additivity and scalar multiplication. It respects both 

operations. Now, that is the second property. So what do we know that for about the kernel of 

the map? So, so by the way, here is one property we know about the kernel. But now, because 

it is a K linear map from K power m to K, so this is what you would call a linear functional 

on the, the vector space k m. 
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The kernel is a piece of subspace. It is a subspace of K m. So again, just to emphasize that I'm 

talking about vector spaces over the field K, I will say it is a K subspace of K m. So here, you 

know, there are two fields K and F in play and sometimes you may think of something as a 

vector space over K, sometimes over F.  

So just to ensure we are not getting ourselves mixed up, I am just emphasizing the K or the F. 

So the kernel is a K subspace. So that is the second property. This K subspace is interesting. 

It does not intersect F power m, where F is the base field. And what is the third property and 

this is somehow the most important, one of the most important properties of these maps.  

And this really uses the fact that gamma is a group. So I observe that the earlier half of 

Artin’s theorem, did not really use the fact that gamma is a group of automorphisms. The 



group structure was not used but now we are going to use it. So here is the, here is the 

observation.  

So suppose I pick an m tupple beta i from 1 to m, which is in the kernel of sigma, psi sigma. 

Then what does that mean? It just says that the sum, beta i sigma alpha i is 0. Now, what I 

can do is I can apply an element of gamma and auto morphism. Here, remember, gamma is a 

subset of the auto morphism group of the field K. So, I will apply tau to this equation. So, 

what does that mean? It will give me summation, so, it is tau acting on this sum is 0.  
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But tau being an auto morphism this can be written as the sum of tau of beta i into tau of 

sigma of alpha i. So, I have used the fact that tau respects both addition and multiplication. 

And now observe tau sigma is just another element of gamma. So what does that mean? It 

says that, if I look at these numbers, tau beta i, so maybe I will give them a different name 

now, beta i dashes you wish, then it says that; so this says that these beta i dashes, this new m 

tupple is actually also in the kernel of psi or not of psi sigma, but psi of tau sigma.  

That is exactly what this equation implies. So, here is the conclusion, if beta i belongs to the 

kernel of psi sigma, then tau beta i, so let me just again call beta i dashes as tau beta is. So, if 

we apply tau to each component, then the resulting m tupple is in the kernel of psi of tau 

sigma. And this is true for all sigma tau coming from gamma.  

So, this is the third important property that we need. Now, what does this imply, this third 

property especially, it says the following; if we take the intersection of all these kernels; so, 



let W denote the intersection of all the kernels. What is this is some subset of K power m then 

this intersection has the following property.  

So, just look at what this says; if you have something in one kernel and you apply an element 

to it, it lies in a different kernel, one of the other size, but if something comes from the 

intersection of all the size, then if you apply tau to it, the answer is again and the intersection 

of all the taus all the sides.  

So, if W is defined like this, then the conclusion is the following; W is invariant under 

gamma. This means the following, then if I apply tau to W, the answer is again in W. So, beta 

i belongs to W and so does tau beta i. So, this invariance under the action of gamma, I should 

say this is for all tau in gamma. 
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So, we are going to use this this invariance under the action of gamma. So this is this is one 

property again. So, this is the first property of W. And of course, the other properties come 

from the previous statements, which is that W is of course, an intersection of subspaces. So, it 

is a subspace. It is a subspace of K power m. And in fact, every one of the size itself does not 

intersect F power m.  

So, in particular, W does not intersect F power m. So, these are the three important properties 

of W. Now, what does this, what does this give us? Well, I claim that you really cannot find a 

W satisfying these properties. Claim is the only possibility for W is just the 0 subspace. These 

three properties are just too strong. 



So proof, let us quickly prove this. So, suppose there exist a nonzero element. So, if there 

exists beta i 1 to m in W, with which is nonzero with say, with some beta i, say the ith term, 

maybe we should call it beta j with some nonzero element with beta j, not 0 for some j 

between 1 and m. So it is a nonzero element of W. Then will you we will get a contradiction.  

So observe that, since W is a subspace, K subspace. So maybe I will call this m tupple as 

beta. Since W is a K subspace meaning it is closed under scalar multiplication by K, what 

you can do is the following; you can scale this element beta. We can scale beta by various 

scalars by elements of K. In other words, you can take beta multiplied by various Cs.  

So, in other words, replace beta by a scalar multiple of beta, where the scalar comes from the 

field K and when you scale beta and we can scale beta by elements of K and so maybe I 

should say by rescaling beta we may assume that this nonzero element beta j, we may assume 

beta j is any given element of my it is an element beta j is lambda where lambda is some 

fixed, let me fix somewhere lambda belongs to K is some fixed element.  

In other words, I can by rescaling I can ensure beta j is anything, any element I want, any 

element of K. So I am going to fix lambda and I will rescale beta so that beta j equals the 

value lambda.  
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Now, what is the, what is the point of this? So now, let us apply the three properties of tau. So 

observe, first I apply sorry, three properties of W. So now let us look at this property here. 



We know that if you apply tau to beta i, this answer is W. So we know this was property 1 

that I mentioned of W, for all tau in gamma. 

Now, here is a standard sort of trick that one uses to construct elements which are invariant 

under actions of finite groups. Let us consider the sum of all these tau beta is. So let me call 

this new element a zeta maybe. The zeta denote the sum of all these tau betas. Sorry, tau 

belongs to gamma. 

So this, this m tupple, I am calling as tau beta. So, this is now m tupple. When I write tau 

beta, I really mean an m tupple here. So maybe we will put a underscore into the beta to say it 

is like a vector. So, look at this, this new element, this is an element of K power m and what 

more do I know about it? The key property is that this is invariant under the action of sigma.  

So, consider there is some zeta, not only is it in K power m, it is actually in W. Why, because 

each of the tau betas is in W. So they have some missing W. Now, the important properties if 

I apply any element sigma to zeta where sigma is, so let sigma be an element of the group 

gamma. If you apply sigma to zeta, then the answer is the sigma tau beta.  

But when tau runs over gamma, sigma Tau also runs over gamma possibly in a different 

order. So, this is actually the same as zeta again. This is just the same sum except that the 

terms may appear in some other order. So, this is the, this is the key property. So, sigma zeta 

is actually equal to zeta for all, for all elements sigma and gamma. So, what does that mean?  

If I write zeta as I say zeta i equals 1 to m, the same tupple, then it means if I apply sigma to 

these components, so then sigma zeta i. So, the m tupple sigma zeta i coincides with zeta i, 

means that each of the components when I apply sigma to the zeta i, I get zeta i for all i equal 

to 1 to m, this is true for all sigma and gamma. So, now we stare at this last equation here.  

It says that the zeta is that I have, they are fixed by every element of gamma, they are 

elements of K, but they are fixed by every element of gamma.  
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In other words, the zeta is are all in the fixed field gamma. This is true for all i equals 1 to m 

but the fixed field is exactly what we are calling F. So, to summarize what the trick finally 

does, we have one element beta in W. Now, we know that W is invariant under applying 

elements of gamma. So you apply all the elements of gamma, the tuas, and you get many 

vectors, tau betas.  

Now when you add those vectors up, the final answer is definitely invariant under, I mean it 

is fixed by the action of gamma because you have taken a sum. Now, this implies that the 

zeta is are all in F. So what does that mean? We have constructed so zeta therefore, which is 

the tupple of zeta is is an element of F power m and remember, zeta was an element of W to 

begin with.  

And now, recall that was the second property which said, W has no elements whose 

components are all in F. So we have constructed one such element, which means that the zeta 

must actually be the 0. So zeta i had better be 0 for all i equals to 1 to m. So, what does this 

mean? This says in particular, so in particular, let us just apply it to the jth component.  

So, remember we know that at least one component beta j was not 0. So, take i to be the jth 

component, where beta j was the given lambda that we fixed. So then what is zeta j by 

definition? It is summation tau beta j, tau ranging over gamma. This is what we called 

summation tau lambda; lambda was the value of beta j gamma, this is 0.  

So, what does this mean? This says that summation tau of lambda is 0, tau belongs to gamma. 

But now here is the interesting thing. Remember, the lambda was arbitrary to begin with. So 



we could have chosen any element lambda of the field K and why was that? Because beta j 

was nonzero to begin with, so you could scale and change its value to any element of K.  
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But lambda is arbitrary but lambda in K was is arbitrary to begin with. So, this implies that 

summation tau when evaluated on lambda is 0 for all lambda in the field K, tau coming from 

gamma. This means that if you think of these as just maps from lambda to k, so this identity 

is this identity is when I am thinking of all the taus as being maps from K to K. 

It is, it is the linear combination of the taus that just the sum of the towers is just the 0 map. 

That is what this just means. But recall, we have proved linear independence of characters. 

The taus after all are characters and you know, of the the multiplicative group of the field and 

so on.  

So remember, one of our corollaries of the linear independence of characters said that the 

auto morphism group of a field is always a linearly independent subset of maps K K. But 

recall that gamma is in fact K linearly independent. But then this thing here contradicts that. 

This is a contradiction. But summation tau is 0, means they are linearly dependent, means 

gamma is linearly dependent.  

This is a linear dependence relation among the elements of and that is your contradiction. So 

this proves the second half of Artin’s theorem. So what we have really shown is that the, 

well, sorry I should not write, there is still one little thing that we need to do.  
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We are almost there. So, what does this prove? So, we only proved that W is 0. So therefore, 

our conclusion is that W is 0 but that is not what we wanted to prove the starting. So recall at 

this point, let us just remember what did we want to prove? We had, we started out with so, 

recall one, alpha 1 through alpha m, was our original linearly independent subset, this was the 

F linearly independent subset of K.  

We wanted to show that this number m is at most the cardinality of gamma. This is what we 

wanted to prove. Now along the way, we have sort of shown, constructed a certain subspace 

W and shown that that subspace W is zero. So how does this subspace being 0 tell us that m 

hat can be at most of the cardinality of gamma. That is the last step that we need to complete.  

So now consider the following map. So I had remembered, from K m two K, I had a map say 

called psi sigma. But now I am going to stitch all those maps together. So I am going to 

define from K m to mod gamma copies of K. So this I will write as, so let us just keep it like 

this for the moment.  

So what is psi? It is the following. I take an element beta, and I map it to the first component, 

I will map it to psi sigma 1 of beta psi sigma 2 of beta and so on. Psi sigma, what name shall 

we give n maybe sigma n of beta, where gamma is the set sigma 1, sigma 2, sigma n. So I had 

a map psi sigma, one for each element of my group gamma.  

Now I am just stitching together all those maps forming one single map from K power m to 

how many copies of K. This is K power n, where n is the cardinality of gamma. So I have a 



map and remember that, that starting look like what we want to show that m is at most n, if 

we show that this map is injective for example, it will prove that the domain has to have 

dimensions smaller than the range.  

And that is what we will show. Now observe psi is, so we are almost done, psi is a K linear 

map between these two K vector spaces. What is the kernel of psi? So this is obvious, the K 

linearity because each component is K linear and the kernel of psi is, well all those betas 

which map 2 0 comma 0 comma 0 comma 0 and so on.  

That just means that beta should live in the kernel of each of the sigma is but remember, that 

is exactly what we call kernel sigma psi, psi belong belongs to gamma, maybe write it like 

that. That is exactly the subspace W. It is the intersection of all these kernels of the psi sigmas 

and now, where does that leave us? We just showed that W 0. That was the whole point of 

the proof. And so it means that this map psi is actually an injector map.  
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It is kernel is 0, therefore, psi is injected, or a 1 to 1 map. Now, an injective map between two 

K vector spaces means that the domain vector space must have dimension that is at most the 

dimension of the codomain or the range. So in this case, m can be at most the cardinality of 

the mod gamma, which is what we call n on the left hand side. So that now completes. So this 

completes the proof of Artin’s theorem. So next time, we look at some consequences of this 

theorem. 


