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Let us do a problem. So here is the statement. So, let us take the field Fp, this is the finite 

field with p being a prime. And consider the following polynomial, let us take f of x to be the 

polynomial x power p minus x plus a constant a, where a is an element of Fp, but we assume 

is not 0. So, the question says prove that f is an irreducible separable polynomial, if it is an 

irreducible separable polynomial in Fp of x. 

So, let us prove this. So here is the solution. It involves lots of little things that we have learnt 

along the way. So, it is a nice application of many of the facts we have seen. So, let us go 

ahead and do this. So first, let us check separability. So why is f separable? Recall the 

criterion for separability, which says that if the GCD of f and f prime is 1, then f is 

automatically separable. So now in this case, we just have to compute the derivative. So, let 

me call this Df of x or f of, or f prime of x.  

So, the derivative which is this case, just px to the p minus 1 minus 1, but remember, we are 

over Fp and so p times any anything is just 0. So that is that first term vanishes. So, this is 

just the polynomial minus 1. So obviously, the GCD of this polynomial Df or f prime with 

the original polynomial f is clearly 1. So, this means then, so this is true. And so of course, 

this means that f is separable. So here, I have used the criterion for separability in terms of the 



derivative. But there is another way of doing this, which is, so recall, we are asked to show 

two things one, that it is irreducible as well as separable. 
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And so, recall, so another way, maybe, another approach is the following, recall that Fp is a 

perfect field, and recall that meant that, what we call the Frobenius automorphism, the map 

which sends every element to the pth power is an isomorphism of this field. So, this is a 

perfect field. Therefore, what does that mean? Any irreducible polynomial is automatically 

separable. So, this was what perfectness allowed us to conclude, this implies every 

irreducible polynomial in Fp of x is automatically separable.  

So, I have used that result that we proved about perfect fields. And so, what does it mean in 

this in the context of this problem? Therefore, it is enough to prove that f is irreducible. So, 

we were asked to prove both. So, it is enough to show just one thing that f is irreducible, that 

would automatically imply separability. So, let us show that f is irreducible. So, observe that, 

if a is 0, so remember, our assumption was that a is not 0. But let us just pause for a moment 

and wonder what happens if a is 0, then the polynomial is just x to the p minus x. 

And this is of course, not irreducible, you can pull out a common factor of x definitely. But in 

fact, you can exactly say how this factorizes, observe that if I take any element alpha in Fp, 

the finite field, then alpha power p is exactly alpha. So, you have seen this in the construction 

of finite fields. So, what does this mean? This means that every element alpha of Fp is a root 

of this polynomial. And so, we can write this polynomial, it factorizes completely, it splits 

completely over Fp as follows.  



So, it is just a product of x minus alpha as alpha ranges over Fp. So, we know that, a is not 0 

is definitely required. So, we have however, that a is not 0. So, now let us write out our 

polynomial. So, this looks like x to the p minus x, and there is an additional factor of a. Now 

let us do the following since a is not 0, I will pull a common factor of a from everything, 

write this as a inverse x to the p minus a inverse x plus 1. So, my goal is to get the constant 

term to be a 1 here. 

Now, this is well, I can rewrite this as a times y to the p minus y plus 1. So, I am changing 

variable here, y is just a inverse x, and why is that? Why is the first term y power p? 

Observed that, we have just said that here, that every element of the base field Fp its pth 

power gives you alpha. So, y is a inverse x means that if I raise this to the pth power, it is 

going to give me a inverse to the pth power x to the pth power, but a inverse to the p is just 

the same as a inverse, because a inverse is an element of my field Fp. 
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So what does this mean? It basically means that I can rewrite this polynomial in such a way 

that my constant term is a 1. So let us, let us write that out here. So, g of x equals x to the p 

minus x plus 1. So, observe, so I am going to define g in this way, then, so let g be defined in 

this manner, then observe that f and g are more or less the same polynomial, they just differ 

by this following very simple transformation, I can change variable to a inverse x, and I pull 

out a common factor of a.  

So, f of x is just a polynomial a times g of a inverse x or equivalently I can rewrite, I can 

change x to ax and write this is as g of x is nothing but a inverse f of ax. So, what is all this 

you need off? Well, in particular, this means the following. This says that if f, so maybe I will 

number the facts along the way. So, let us see this is if a equals 0, what happens? Step two, is 

this this simplification here. Step three, is realizing that, well, maybe this is still step two.  

So, observe that if fx is irreducible, then so is gx. So, observe f of x is an irreducible 

polynomial. So, observe, this is also a polynomial with coefficients in Fp of x. So, f of x is 

irreducible, if and only if g of x is irreducible. How do we prove this? Well, it is easy enough. 

So, let us suppose g is irreducible. So here is a little proof of this fact. If g can be written as a 

product of two polynomials, say, let me call them m of x and n of x, both polynomials with 

coefficients in Fp, then just use this transformation property.  

How do you get f from g? Well, f of x is just a times g of a inverse x. So, it is m of a inverse 

x, n of a inverse x. Now observe that this gives me a way of writing f as a product of two 

polynomials, because well, these are also polynomials with coefficients in Fp. So, let me 

assume that m and n with, let us say degree of m and degree of n, now they are both 



polynomials of degree strictly smaller than the degree of g, so degree of m smaller than 

degree of g. 

So, you can write it as a product in this manner, then the same is true of f because for 

example, look at this guy here. This is a polynomial whose degree is strictly smaller than the 

degree of g. This is a polynomial whose degree is smaller than the degree of g, but the degree 

of f and the degree of g are the same. So, degree g is the same as degree of f. 

In fact, both degrees are equal to p in this case. So, this gives me a way of rewriting my, so, 

this gives us a way of rewriting f as a product of two polynomials again whose degrees are 

strictly smaller than f. In other words, if g is reducible, then f is reducible. And sort of you 

can work the same argument with the roles of f and g reversed. So, that just shows that if f is 

irreducible, then g is reducible and vice versa. So, let us just prove that g is irreducible. 
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So, claim g is irreducible, so proving it essentially, we are saying that if you, recall g is just 

nothing but f with the value a equals 1. So, what we are saying is we prove it for equals 1, 

you prove it for all values of nonzero, all nonzero values of a. Claims that g of x is 

irreducible, so it is x to the p minus x plus 1 is irreducible. 

So, observe the following that definitely, this has no roots in the base field Fp, so observe g 

of alpha is definitely not 0, for all alpha in the base field because, in fact, if I compute g of 

alpha for any element of the base field, it is alpha to the p minus alpha plus 1, but we know 

that this is 0, so this is actually 1. 



So now, let us prove it is irreducible, suppose, suppose not, suppose g can be written as a 

product, let us say m1x and m2x, I decompose it into a bunch of irreducible factors mk of x, 

each mi is irreducible, each mi belongs to Fp of x. And what more do I know about each mi? 

I also know that the degree of mi is strictly smaller than degree of g. 

Now, let us do the following. Let us take the first polynomial m1 of x and that is some 

irreducible polynomial. So, it has a root in some extension of Fp. So, let beta be a root of the 

first polynomial m1 of x in some extension of Fp. So, recall this is one of the things that you 

learned about symbolic adjunction which is that given any polynomial, the non-constant 

polynomial, you can always construct some extension, some finite extension in fact of the 

base field in which that polynomial has a root. 
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So, let us take that extension. So, let us consider Fp beta. So, I take that extension in which 

there is a root beta and I consider the field Fp beta over Fp. So, what is the degree of this 

extension? Well, the degree of this extension, so let us call the degree as d. So, let d denote 

the degree of this extension. What do we know about d? d is just the degree of m1, m1 is the 

irreducible polynomial. So, the degree of m1 is definitely less than the degree of g. That was 

the starting assumption, which is p. 

So, degree of m1 is smaller than p, that is what you know, d is smaller than p. Well, that is 

one thing we know about d. Another thing we know about d is that remember, beta is not in 

Fp. So, this is fact 1, is that d is less than p. Fact 2, is that d is at least 1. So, I claim in fact, I 

can say more d cannot equal 1. Why is that? That is because d cannot equal 1, since if d is 1 

that will mean that beta belongs to the base field. 



But we have already seen that g has no roots in the base field. We have already shown that g 

beta is 1 definitely for any root beta of g. So, what this means is that, this is an extension of 

degree equal to d, which is a number strictly between 1 and p. What does that mean? Well 

recall from your construction of finite fields, you have learned that if I have a finite field, Fp 

and I have a degree d extension of finite extension.  

What does that mean? It just means that the field on top, thus Fp of beta, it is a field whose 

cardinality, I mean as a vector space over the base field, it is of dimension d. So, the 

cardinality of the field on top is just p power d. And you know that finite fields of a given 

cardinality are unique. So, this is just the finite field of cardinality p power d.  

Thus, what does that mean Fp of beta is just the finite field of cardinality p power d, which 

means, in particular that if you take any element from this field, which means that if I take 

gamma, for all gamma in this field, if I raise gamma to the power p power d, the cardinality 

of the field I am supposed to get back gamma. This is the property that these finite fields 

have. In particular, this is true if gamma equals beta. So, let me now put gamma equals beta 

because beta in particular is an element here. 
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So, I conclude that beta thus, beta satisfies the following equation, beta power p power d is 

beta. So, I get one equation that beta satisfies. But we already knew something about beta, 

what do we know? We already know the following that beta was the root of g. Beta was in 

fact a root of m1, which was one of the irreducible factors of g. So, this means, in particular 

that beta power p minus beta plus 1 is 0. So here is the second equation that beta satisfies. 



Now, our claim is that these two equations cannot be simultaneously satisfied for d a number 

strictly between 1 and p. So, these cannot both hold, if d is a number between 1 and p. Why is 

that? Let us prove this. So, probably many different ways of going about the proof. But let me 

start with the second equation here. So, I know that beta power p, I will rewrite it as beta 

power p is beta minus 1. 

Now from this I can compute what is beta power p square. So, I will just take beta power, 

sorry beta power p square is nothing but beta power p the whole power p. So that is beta 

minus 1 the whole power p. Now, well what is that? That is beta plus minus 1, the whole 

power p. And you have seen this computation many times, this is just beta power p plus 

minus 1 power p, because all these are taking place over a field of characteristic p. All the 

intermediate terms that you get in the binomial theorem are all divisible by p. So, they all go 

away. 

So, beta to the p square is just beta to the p plus minus 1 to the p. Well, what is that? So, this 

is just beta to the p. So, beta to the p, I already know is beta minus 1. So, this is just beta 

minus 1 and minus 1 to the p, well, for now, if p is an odd prime, so maybe we should just 

assume, let us just make that assumption. Suppose p is an odd prime, I mean, you can just do 

it similarly for p equals 2. So, let me just say case 1, p is an odd prime. Then this is again, a 

minus 1. So, this is beta minus 2. 
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Now, you can already see how this is going to go, if I compute the next power of beta to the p 

cubed is just beta to the p square the whole to the p, that is now beta minus 2 the whole to the 

p. And by the same token it is going to be beta to the p minus 2 to the p. But 2 to the p is just 

2. Recall this is because 2 belongs to the base field, 2 is in Fp. And therefore, when you raise 

it to the power p, you just get back itself, and so on. So, what does that mean? Oh, sorry, beta 

to the p on the other hand is beta minus 1.  

So, this is beta minus 3. So, in general, well, or let us do it d times, this will just give me beta 

minus d. So, I have just repeatedly I have iterated my second equation, and concluded that 

beta to the p to the d is beta minus d. On the other hand, the first equation tells me sorry, I am 

here. But we also know, also know the first equation which says that beta power p power d is 

beta. Now, how can these two equations be true? 

Well, this means automatically that d is 0. But observe, that cannot happen. Why not? Well, 

because d is a number between 1 and p. So, since d is strictly smaller than p, it cannot happen 

that d is 0 in this field. So, d is 0 is a contradiction. So, if d is p then it is okay. If d equals p 

then of course, it means that p is just 0 in a finite field of cardinality p, or any characteristic p 

field. So that completes the proof. 


