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Today we will take a short detour and talk about Linear Independence of Characters. So here 

is the, here are the definitions; so, let G be a group not necessarily finite and F a field. So, by 

a character will mean the following or maybe just to emphasize the field an F character of G 

is a group homomorphism let us call it chi from the group G to the group F cross, which is 

the multiplicative group of the field. So, this is the field, delete the origin. Think of it as a 

group under the multiplication. 

So, this is a definition of an F character, just a group homomorphism from G to the 

multiplicative group of the field. And here is the theorem says that, if I have a collection of 

characters chi 1, chi 2, chi n. Let us say chi 1, chi 2, chi n be pairwise distinct characters, F 

characters of a group G, then the chi i are linearly independent, 1 to n are linearly 

independent over F. So, what does that mean? In other words, if I take a linear combination, 

so other words if I take summation ai chi i equal to 0. So, what are these now? Chi i's are all 

interpreted as functions from the group G to the field F. And when I say summation, I just 

mean point wise summation for some ai. 
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So, this is 0 for some elements ai of F, then this implies that all the ai's must be 0. So, this is 

the usual definition of linear independence. The only little thing that requires explanation 

here is what we mean by this this summation. I know what do you mean by a linear 

combination of characters? So, note, what we are probably thinking of is the following vector 

space. So, let me just call it maps from G to F. What is this?  

This is just all functions, set maps, do not put any further structure on anything, look at all set 

maps from G to F, just a map of sets, such that F is a map of sets. So, this collection of all 

maps is in fact, is a vector space in the F, is a F vector space. What I mean is I have a notion 

of addition and scalar multiplication which satisfies the axioms. How do you add two maps? 



Well, you just add them point twice. So, how do you add to have f1 and f2, which are both 

maps. 

In fact, I do not even need G to be a group for all this, any set will do. Then I define f1 plus 

f2 pointwise to be just this and how do you scalar multiply f, f1, let us here also use f. So, if I 

multiply f by a scalar lambda from the field f, this is just I apply f to g, it is now an element 

of the field f and I multiply it by lambda. So, this is now for all lambda in F. So, these are the 

definitions, this is how addition and scalar multiplication of maps are defined and under 

these, I mean it is easy to check that with these definitions, it forms a F vector space. 

And so, when we say linear independence here, what we mean is, this linear combination is 

thought of as an element of this vector space of maps. So, think of this as a now map from G 

to F, which is basically pointwise linear combination on every element of the group G, you 

just have to compute summation ai chi i of G. So, in this vector space, this is a set of linearly 

independent elements. That is the content of the (()) (5:36). 
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So, let us prove this now. So, the proof is by induction on n. So, I am just going to do this by 

induction. So, for n equals 1, this is trivially true. Why? Because a single character, so if I 

only have one character chi 1, then that character is not 0. A character is definitely a nonzero 

map. Why? Because its range is actually inside F minus 0, because chi 1 is such a map, 

therefore chi 1 cannot be the 0 map. 

The 0 map is the one which takes all the elements of the group to the element 0 of the field. 

So therefore, chi 1 itself is linearly independent. Let us put LI for linear independence. So 



now let us assume that this is, this holds for n minus 1, assume induction hypothesis that 

assumes this is true for n minus 1. So, let us take n to be at least 2 for this. So, when I say 

assume true for n minus 1, I mean for any collection of n minus 1 characters, any collection 

of n minus 1 characters is assumed to be linearly independent. 

And now we need to show that any collection of n characters is also linearly independent. So, 

suppose not, so, to prove the claim for n, let us proceed by contradiction. Suppose not what 

does that mean? It says that there exists some linear combination which is 0. So, there exists 

scalars, that are elements ai in F such that this linear combination ai is 0. And we call what 

that just means is the pointwise sum ai chi i of g, it gives me 0, for all group elements G.  

Now, observe that because of the induction hypothesis that every n minus 1 among these n 

are linearly independent. So, by the induction hypothesis, maybe we will give it a name. So, 

we will say since this, so I will call this star the hypothesis by the induction hypothesis, what 

we conclude is that none of the ai's can be 0. Because even if one of them is 0, what you 

would obtain is a linear dependence relation among n minus 1 or fewer of these chi i's, but we 

know that no n minus 1 are linearly dependent.  

So that is the, that is the conclusion. All the ai's are nonzero. That is what we have. Now, let 

us see. So, this little relation here is what we need. We know that this linear combination is 0. 

And what we are going to do is to substitute in place of g, we will substitute gh. So let us 

keep this in that, just copy. 
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So here is what I know to be true. So let us, this is true for all g in G. So, in particular, it is 

true if I replace g by the element gh. So, I am going to replace g by gh, h is some element of 

the group, I do not care. Pick any element, replace g by the element gh. So, what do we get? 

Well, I get the new relation, ai chi i of gh is also 0. And I think of g as sort of varying here. I 

will fix h, fix h and let think of g as varying across the elements of the group. 

So here is my my relationship. And what does this imply? This says that, well, I have to use 

somewhere that chi i is a character, that it is a group homomorphism. And now is the time to 

use it. So, I am going to rewrite this as chi i of h, chi i of g is 0. Now, what does this mean? 

Well, I will reinterpret this equation as follows. This just says that this is true for all g in G.  

So, it is almost like the original equation that I had. So, this was my original equation 1 and 

from that, I have obtained a second equation 2, in fact, I have obtained one such equation for 

every element h that I can fix. So, from one dependence relation that I had, I have generated 

many more dependence relations. So, observe, this just means that ai chi i of h, so I will 

rewrite this as a ai chi i of h, think of that as a new constant times the function chi i is 0. 

So, now I have removed g from this picture. So, what does this imply? I have many different 

dependence relations among the chi i's. And therefore, it allows me to eliminate, so I can now 

do the following. I can, from these I can eliminate, so let us take these two. And let us 

eliminate chi n from this equation. So, let us eliminate last fellow chi n of g. 

Now, what does that mean? Well, I have to multiply 1 by chi n of h. So, how do I eliminate 

chi n of g from these two equations? I multiply the first equation by chi n of h, and I subtract 

it from the second equation. So, I, to do this, I have to multiply this by chi n of h and subtract 

the second equation from it. So, let us do that and see what we get. 
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So here is what we will get, summation i goes now only from 1 to n minus 1, because the last 

terms were to get cancelled ai and so, let us write everything out for a moment ai chi n of h 

chi i of g, this is my first equation with chi n of h multiplied minus the summation ai chi i of 

h chi i of g, goes from 1 to n. So, this is what I get. So, this difference is of course also 0. But 

now observe that the nth term in these two summations cancel each other This means that I 

can rewrite this as 1 to n minus 1 ai and I get chi n of h minus chi i of h times chi i of g is 0. 

And this is true for all g in G. 

Now, what does it imply? This is exactly a linear dependence relation between the first n 

minus 1 chi i so this I can think of as, I will just remove the g now from this, think of it as a 

linear dependence relation, which connects the first n minus 1 chi i's. So, this is now an 

equation if you think of it in the vector space all maps from G to F. 

Now, what does that mean? We remember had assumed by induction that the any n minus 1 

chi i's are linearly independent, but here is a linear dependence relation amongst them and all 

the, so therefore, all the coefficients have to be 0. So ai into chi n of h minus chi i of h have to 

be 0, for all i equals 1 to n minus 1, but we recall had said that the ai is themselves were all 

nonzero by the induction hypothesis, that means that the inside has to be 0. 
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So, we conclude then that chi n of h therefore, equals chi i of h, and this is for i equals 1 to n 

minus 1. But remember this is the important observation h itself was arbitrary, we fixed h to 

be any element of the group g. So, this arbitrary choice tells you that well as characters, chi 1, 

chi 2, chi 3 are all equal to chi n. But that is a contradiction. In fact, it is our original 

assumption was that, the chi's are all pairwise distinct elements, so chi n cannot equal any one 

of the previous ones. Here we therefore get a contradiction.  

So that completes the proof, shows that the by induction, we have shown that any set of 

pairwise distinct characters is necessarily linearly independent. And so here is a little 

corollary. And it is in this form that this will find application. So, if K is a field, then look at 

the set Aut K. Recall, Aut K is just a set of all field homomorphisms of K, this is, well, this is 

linearly independent. So, you can think of Aut K as follows. You know, these are just, this is 

a subset of all maps from K to K, all set maps from K to K. 

And as we just said, the set, the set maps from K to K is a K vector space. So, this is a K 

vector space. So, the set of automorphisms is well, it is it is not a subspace, it is a subset of 

the K vector space. And the claim is that this is a linearly independent subset of this K vector 

space. So, it is linearly independent over K. So, K is the only field here really. 

So, we claim that any collection of automorphisms is, well, the set of all automorphisms is a 

linearly independent set. And, well the proof is, is rather easy, it just follows from the 

previous theorem that we have already shown. So, observe that to show that a set is linearly 

independent, just means you pick any finitely many out of them, you pick any finite number 

of elements from Aut K and you must show they are linearly independent. 



So, it is only a checking, only involves checking finitely, many at a time. So, let us pick 

finitely many automorphisms and show that they are linearly independent. So, let sigma 1, 

sigma 2, sigma n be distinct, let us assume they are all pairwise distinct automorphisms. And 

you need to claim they are linearly independent somehow by using the previous theorem. 

Now, how do we think of them as characters? Well, they are maps from K to K. So, observe 

that each sigma i, I can think of as follows, I will restrict sigma i to K minus 0. I will think of 

it as a homomorphism from the multiplicative group K cross to itself. So, this is a group 

homomorphism. It is a group homomorphism. 
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So, if instead of sigma, I look at sigma restricted to K cross, then this is therefore, this is a 

character, this is a K valued character. So, this is a K character if you wish, of what is the 

group involved group? Well a group is just K cross. So, by the previous theorem, therefore, 

you can apply our previous theorem, by our previous theorem conclude that and what do we 

conclude? 

That the collection of all sigma i restricted to K cross from 1 to n is linearly independent 

subset of the set of all maps from G to K and G here is K cross to K. But that is more or less 

all that we need, because observe that maps from you know, K minus the origin to K. And 

maps from K to K are, well, they are almost the same thing. So, if instead of, so, I mean, what 

do the sigma i's, what is the difference? Sigma i restricted to K cross. 

And what is the extra point? K only has one additional point; K is just K cross union 0. And 

therefore, if I know sigma i on K cross, then I know sigma i completely. Because observe 



sigma i on 0 is 0. So, sigma i on K cross, if you know that and if you know sigma, well, if 

sigma i is 0 is certainly 0, because it is a homomorphism. So, these two determine sigma i. 

This tells me what sigma i is. 
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So, in other words and of course, one has to check this, but the linear independence of, so 

observe that the linear independence of sigma i restricted to K cross implies the linear 

independence of the sigma's that sigma i's on all of K, sigma i on K. Why is this? Because, 

well, how can it possibly fail, only if it fails at the origin. 

So, if there is some linear dependence relation at the, which somehow fails at the origin 

alone, but that is not going to happen. So, this is an easy verification. So, I should just say 

exercise maybe, so this is one additional point does not cause any problem. So, this is an 

important result which will be used to prove Artin's theorem. 


