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And now we are ready to state our main theorem with all these things in place. Let me state 

the following characterization of Galois extensions. Let K over F be an algebraic extension, 

then the following statements are equivalent, the following are equivalent. 1, that K over F is 

a Galois extension. Property 2, if gamma denotes the group Aut K over F, F automorphisms 

of K, then the fixed field of gamma is exactly F.  

And property 3, statement three, says for all elements alpha in K, it is minimal for each alpha 

in K, it is minimal polynomial m alpha of x. So, its minimal irreducible polynomial over the 

base field F splits into a product of linear factors, more than that the linear factors are distinct. 

So, it splits completely, but it does not have repeated roots in K. And this is really the 

characterization that we now want to prove. 

Now, observe that, in some sense 1 and 3 are really, the same thing, we have, we talked about 

normality and separability; and observe that, to say that the minimal polynomial of every 

alpha in K splits completely was one of our equivalent characterizations of a normal 

extension. And the other fact that the minimal polynomial has is separable, meaning it has no 

repeated roots was exactly the characterization of separable extensions. So, quick observation 

here is that 1 and 3 are really equivalent to each other. 
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So, let us let us prove this. Start with the assumption. I mean, start with the observation that 1 

and 3 are really the same thing. And why is that? Because normality according to what we 

proved in our lecture on normal extensions, is the following that every minimal polynomial 

every m alpha of x splits in K into linear factors. But at the moment, they could be repeated 

as well. But separability ensures distinctness of those linear factors. So separable says that 

every m alpha of x has, so I should say m alpha of x has no repeated roots. And this is true for 

all alpha in K.  

So, looking back on what we have already proved normal and separable is exactly what 

statement three encodes. So that is done. What we are really looking for is this new property 

2, the new characterization, which says that if you take the set of all F automorphisms, then 



the fixed field of that group is exactly the base field. So, let us prove that 2 is equal to 1 and 

3. So, I will prove it as follows. Let me show first that 1 implies 2. So, if it is a Galois 

extension, then the fixed field of the group of F automorphisms is exactly the base field. 

So first observe the base field is certainly contained inside the fixed field. So now I am just 

using the notation of the theorem, gamma is going to denote the set of all automorphisms of 

K, K over F, then we need to show K gamma is F. But one way is clear, F is always a subset 

of K gamma. Why is this? Because what is K gamma, it is a set of all elements of K, which 

are fixed by every element of gamma. 

But gamma is the set of all F automorphisms of K. And what is an F automorphism? It was 

an automorphism, which is assumed to fix the base field pointwise, fix all those 

automorphisms such that when you restrict it to elements, so sigma a is definitely a, for all a 

in F, this is what restricting to F gives you identity means exactly this. So, it is clear that 

every element of the base field is going to be fixed by every element of gamma. So, this 

property is clear. 

Now, what we need to really prove is that the other inclusion also holds, which is that K 

gamma is contained in F. So, we now need to show K gamma is also contained in F and we 

will prove this by contradiction. So, suppose not, well, what does that imply? It says that 

there is an element suppose not or maybe we should, well, so maybe we will prove it as 

follows. Let us pick an element of, well, maybe let me not just say contradiction here. 

So, let me say I need to prove this K gamma is contained in F. So, I will pick an element that 

is not in F and show that it is not in K gamma. So, contra positive is really what I mean, I 

suppose here. So, we will prove this as follows, i.e., if alpha is not in F, then alpha cannot be 

in K gamma. That is what we will do. 
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So let us do that. So let is pick an alpha. So, let alpha be an element of K, which is not in F. 

So, K, which is not in F, so K is an extension of F, I am taking something which is not in the 

base field. And I need to show that it is not going to be fixed by every element of gamma. So, 

so what do we need to show, we will show, we will prove the following, we will show that 

there exists at least one element of gamma, at least one automorphism such that, so, this is we 

will show that there exists an automorphism which maps alpha to something other than alpha.  

If you show this, then we are done. If we do this, then we are done. We would prove, what 

we want to prove, because this will tell you that alpha cannot be in the fixed field, at least one 

automorphism does not fix alpha. So, this is all we need to prove. So, how should we try and 

construct such an automorphism? So, observe that alpha is in K, but not in F means the 



following, consider its minimal irreducible polynomial m alpha of x, same notation as in the 

theorem, m alpha of x is the minimal irreducible polynomial of alpha over the base field. 

This polynomial has degree at least 2, degree of m alpha is at least 2. Why? Because the 

degree 1 polynomials are exactly the, if m alpha had degree 1 then it would tell you that alpha 

is actually in the base field, because the polynomial would be of the form some linear 

polynomial, it looks like, it will look like x minus some constant, which means that alpha 

minus that constant is 0. So, alpha itself is that constant. 

In other words, alpha is the base field. Because if degree m alpha is 1, then it just means that 

alpha is in the base field. In fact, it is an if and only if statement. Now degree is at least 2 

means the following, well, what are we assuming? We are assuming 1, so we are assuming 

that the extension is normal and separable. So now here is an irreducible polynomial m alpha 

of x, look at its roots. So, look at K over F. I have assumed that it is Galois.  

So, in other words, I know that this is a normal separable extension, which implies or you can 

think in terms of property 3, which is the same thing, it says that this polynomial m alpha of 

x, firstly splits completely, becomes a product of x minus alpha i's, i goes from 1 to d, where 

d the degree of this polynomial. So, d is the degree of m alpha, where the alpha i's are distinct 

numbers, that is the important thing here. The separability, where alpha i's are in K and alpha 

i not equal to alpha j for i not equal to j. In other words, you have a split into a product of 

distinct factors. 
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Now, so of course, alpha is one of the roots here. So, m alpha of x, of course, alpha is the root 

of this polynomial. Let me assume the first root alpha 1 is alpha, say, say, alpha 1 is your 

alpha. Now, let us look at the second root. So, recall, there is at least one more root because 

the degree is at least 2. So, let us call the second root as beta. So, let beta denote alpha 2, let 

beta be alpha 2, we know that, what do we know? We know beta is not the same as alpha 

certainly. 

Now we will construct our automorphism as follows, there exists an automorphism, there 

exists sigma in gamma, gammas. There is an F automorphism of K, such that sigma maps 

alpha to beta. That is our claim. Now, once you prove this, you are done, because beta is not 

the same as alpha. Now, let us prove this claim. Again, it is an argument which we have seen 

before when we talked about normal extensions, and so on. So, for this, let us just bring in the 

algebraic closure.  

So, it is convenient to have the algebraic closure here. So, let L be an algebraic closure of the 

field K. So, what I am doing here is looking at K, this is a base field F. And now I am putting 

L inside its algebraic closure. So, observe, again, algebraic closures, as you have seen before, 

are unique. In a certain sense there exists given any two algebraic closures there is always 

automorphism between them which restricts to an identity on the base field. 

Now, so what do we know? Well, let us do the following, meaning we are trying to do this. 

We are trying to construct an a map, which takes alpha to beta. So, let us do the following for 

the moment, let us let us forget about K here. So, I have L, I have F and in between them, I 

am going to look at the intermediate field F adjoined alpha, this is a subfield of K. So, recall 

that alpha and beta are elements of K here. So instead of looking at all of K, I will look at a 

certain subfield which is F of alpha.  

Now let us do the same thing on the other side with beta in place of alpha, you look at F beta 

and I look at L. So, I look at these two extensions. Now, recall the following facts, again the 

same argument which we have seen before. So, recall, F alpha and F beta are actually 

isomorphic fields, there exists an isomorphism of fields isomorphism, they call it psi from F 

alpha to F beta such that with the following properties, psi restricted F is just the identity map 

on F and psi takes alpha to beta. 

So, you have seen this before, and why this, why does there exists a map like this? Well, 

abstractly, because both F alpha and F beta, you can think of both of them as being given by 

well it is a symbolic adjunction. So, you think of F adjoined x, modulo the minimal 



polynomial, and now both alpha and beta have the same minimal polynomial, which is m 

alpha of x, because F alpha is this, but then well, that is, that is really the same as the minimal 

polynomial of alpha and beta are the same, the same polynomial F alpha of x.  

So, you should think of this as also m beta of x. That is like F beta. So, this map if you just 

unravel this, this chain of maps what it gives you is a map from F to F, I mean a map from F 

alpha to F beta, which is identity on F and which takes alpha to beta So I am just recalling 

things you have seen before. So at least we have constructed sort of a map which has the 

property we want, which takes alpha to beta, but now recall a second fact. 
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So we need to recall a second fact here, which is when you have maps. So, observe that L is 

also the algebraic closure of F alpha. It was the algebraic closure of K, but it is actually also 

the algebraic closure of F alpha. Why is that? Because it is algebraic over, what is an 

algebraic closure? It is an algebraically closed field, which is an algebraic extension of the 

field you are looking for. So here, this is an algebraic extension and L is algebraically closed. 

This is what an algebraic closure is. 

And why is L over F alpha algebraic? Well, L is in fact, algebraic over the base field F itself. 

So, recall, the original thing I had L, K, F. K over F, I had assumed to begin with was 

algebraic. L over K, well, L is an algebraic closure of K. So, in particular, L over K is an 

algebraic extension, L remember is algebraically closed. Now, a tower of algebraic 

extensions, algebraic over algebraic gives me something that is algebraic. So, this overall 

extension here is algebraic. So it is, in fact, an algebraic extension of F, so in particular, it is 

an algebraic extension of F alpha.  



So, it involves sort of putting together many of these ideas that keep reoccurring in this 

business. So now again, F beta for the same reason, L is an algebraic extension of the base 

field F. So, in particular, it is an algebraic extension of the field F alpha. And L is an 

algebraically closed field on its own, so L is therefore the algebraic closure of F beta. So, 

what is the summary of this argument, it says that L is the or a if you wish, an algebraic 

closure of both F alpha and F beta. 

And now the fact to recall is that if I have two fields, which are isomorphic to each other, so 

there exists an isomorphism between them, then there is a way to lift this isomorphism to an 

isomorphism of their algebraic closures. So, if the base fields are isomorphic, their algebraic 

closures are also isomorphic. But a little more than that, if you have a certain, given any 

isomorphism psi between the base fields, it extends or lifts to an isomorphism between their 

algebraic closures.  

So, this is again, something you have seen before. So, recall the following fact, there exists an 

isomorphism of fields psi tilde from L to L, such that when you restrict psi tilde to the field F 

alpha, what you get is the original isomorphism psi. So where does this leave us? We are 

almost where we want to be. 
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So now it is time to put the field K back into the picture. So, we had the following. So, I have 

a map from L to L, which is psi tilde. This map has the following property when I restrict it to 

F, it just gives me back well, in fact, if I restrict it to F alpha, let us also put F alpha, it gives 

me psi, in psi remember when you restricted it to F, gave you identity. So, we have this. And 

now of course between F alpha and L, you got K, similarly between F as beta and L you have 

K. So, this contains both F alpha and F beta.  

And now, recall, the K is normal. So far, we have not used the normality of K. So, K over F 

is a normal extension. So, we have only used so far, the fact that it is separable, because we 

said m alpha has, it must have distinct roots. So, if alpha is one of its roots, then there must be 

a different root beta, that is all we have used so far. Normality has not been used yet. And 

now it comes into play. 

So, what do we know, if you recall what a normal (extension), one of the equivalent 

properties of a normal extension was, we proved that if K over F is normal, then any 

automorphism of the algebraic closure of K, any map psi tilde which restricts to identity on F 

must send K to K. So, recall from our lecture on normal extensions, this means recall the K 

over F is normal means the isomorphism psi tilde must satisfy the following property, that it 

must map K back to itself. It cannot send elements of K to elements which are not in K.  

So, psi tilde map psi tilde of K is exactly K. And this is, to prove this, you need to know that 

psi tilde restricted to F is the identity. That is what makes this work, if you go back and look 

at the theorem for normal extensions. So, the K over F is normal means that any F 

automorphism of L must in fact preserve K. So, in other words, when you restrict psi tilde to 



K, what you get is in fact a map which send K to itself. So, let us call this map as sigma. So, 

let sigma denote the restriction of psi tilde to K. 

Now, what is this? Sigma therefore, is a map, it is an automorphism of K, which is identity on 

F, so it is an element of Aut K over F. Further what property does sigma have? Well, sigma 

when you restrict it to F alpha is the same as the original map psi. So, sigma when you 

restrict it to F alpha was the map psi. This means that, in particular, sigma must map alpha to 

beta. And that concludes the proof, because that is exactly what we were trying to construct 

an automorphism of K, an F automorphism of K which sends alpha to beta.  

And notice that we have used many of the properties that we have studied until now. So, we 

sort of pass to the algebraic closure, we use this general theorem which says you can always 

lift maps between, you lift isomorphism of base fields to isomorphisms of their algebraic 

closures. And then you sort of descend to K again, by using the normality, isomorphisms, F 

isomorphisms of the algebraic closures must preserve the normal extensions, they must map 

K back to itself. 

So slightly long-winded proof, but sort of a beautiful application of all the various ideas we 

have seen so far. So, let us see where we are. So, what is it that we needed to do? We needed 

to prove, so we said already that 1 and 3 are the same. So, we have now shown that 1 is the 

same, well, 1 implies 2, we have said 1 and 3 are the same. So, we just need to show that 2 

implies 1, or which is the same thing 2 implies 3. That is all we need to show. So, let us prove 

that. So, let us try and show that 2 implies 3. So that is the last part of our proof. 
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So, what do we need to do? We are going to assume that the fixed field of gamma is exactly 

F and using that we are going to show that every m alpha of x splits into a product of distinct 

linear factors. So, let alpha be an element of K. And consider its minimal irreducible 

polynomial m alpha of x. So, we need to show that this is going to be an element, it is going 

to be a product of distinct linear factors in K.  

Now, let us do the following. Let, so observe at the moment, we know almost nothing about 

the extension. We do not, we have just assumed something strange about the fixed field of the 

automorphism, that is all.  We do not even know for example, that m alpha of x has any other 

root other than alpha in the extension K. We do not know that it splits, we do not know that, 

it is separable. If it splits, does it have distinct roots, we know nothing about m alpha really. 

So, it may not even have any other roots other than alpha, for all you know, so but anyway, 

let us write those roots down.  

Let, it has some number of roots alpha 1, alpha 2, alpha r, belonging to K be the distinct 

roots. Let these be the distinct roots of this polynomial m alpha of x in K. So, observe r is at 

most the degree of m alpha, we do not know that it has now exactly the degree number of 

roots, it probably has fewer. Also, the first root, definitely it has one root which is alpha 

definitely. So, let us again say that the first guy is alpha. Let us call, let us assume that alpha 1 

is your alpha. 

Now, the key observation, so, how do we bring in the automorphisms? Observe the following 

fact, that if I take an automorphism sigma of K over F, then sigma permutes the alpha i's 

among themselves. When I say alpha i, I mean permutes this set of roots alpha 1, alpha 2, 

alpha r among themselves. 



(Refer Slide Time: 26:00) 

 

 

Why is this? Again, something that you have seen before, if in general when I have a 

polynomial. So, recall this fact again, if I have a polynomial coefficients in F, and let us say f 

of some beta is 0. So, let beta be a root, some beta. So maybe I should write it as let beta be 

an element of K, such that f beta is 0, then if I look at sigma beta, which is, say what is sigma 

here? Sigma is an automorphism of K over F. 

So, if I take any sigma and automorphism, and look at sigma beta, then sigma beta is also 

root of the same polynomial. And we proved this, all you have to do is just write the 

polynomial F out and apply sigma to it, just look at f beta 0, you apply sigma to the equation, 

the coefficients will not change, because sigma fixes the field F, you have assumed sigma as 

an automorphism of K over F. 



So, sigma fixes the coefficients, the beta powers will all become now sigma, powers of sigma 

beta instead, and that will show that f of sigma beta as well. Now in other words, if beta is the 

root of f, then sigma beta is also root of f, therefore, sigma must permute the roots of f. That 

is exactly the fact we are looking at here. So, we know for sure that sigma must permute the 

alpha 1 through alpha r among themselves.  

So now let us do the following. Let us consider the polynomial in Kx, it is now got 

coefficients in K, define by the following define by, we can call it g of x is just the product of 

the x minus alpha i's, i goes from 1 to r. Observe this is not necessarily the same as m alpha 

of x because m alpha of x may not factor completely, it may have some higher degree 

irreducible factors and so on. gx is only the product of the distinct linear factors which occur 

inside m alpha of x.  

So, it is a priori, something sort of smaller than m alpha. So, one thing we know for sure is, of 

course, that alpha is equal to alpha 1. So, g, certainly alpha is certainly a root of g. Now, here 

is the very surprising claim, in some sense, that well, at the moment, g only has coefficients 

in K. We cannot say anything more than that, because the alpha i's are only elements of K.  

But the claim is g actually has coefficients in F. Even though it does not look like it, it 

actually has coefficients in F. And to prove that we are going to use our hypothesis that the 

fixed field of the set of automorphisms is exactly F. So, let us prove this. So, what are the 

coefficients of g? So, let us expand g out and see what the coefficients look like. 
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So, gx now looks like x power r minus summation of all the alpha i's alpha i alpha j x to the r 

minus 2 and so on, so this is overall i less than j. So, recall this is how one expands 

polynomial and these coefficients here are exactly the various elementary symmetric 

functions if you wish. So, these fellows are all symmetric functions of the roots, symmetric 

polynomials if you wish or symmetric functions. 

They are symmetric polynomials in the alphas. In other words, when you permute, the alphas, 

these things do not change, these coefficients do not change. And in fact, they are what are 

called the elementary symmetric functions, if you know what they are. But for us, the key 

word here is symmetric, that these coefficients do not change if you permute the alphas 

among themselves. 

Now, what does that mean? It says that, if, for example, let us take the first coefficient 

summation alpha i here, if I apply any one of the sigma's, any automorphism sigma of 

belonging to K over F, then, sigma only permutes the alphas among themselves. So, this will 

give me the same answer for every alpha. So, for every sigma in automorphisms of K over F. 

Similarly, if I take the second coefficient, so in first coefficient has a minus in front, the 

second coefficient does not. So, these are all twofold products, the alphas, just gives me back 

alpha i alpha j. Why? Because the only possible action of sigma is to permute the alphas, it 

will map each alpha i to some other alpha j. But then this final combination remains the same. 

This is again true for all sigma in Aut of K over F. So, what does that imply? Well, and so on, 

so you can see this is true for all the coefficients.  



So that means that the coefficients, so the coefficients of g, therefore, all belong to K gamma, 

remember gamma is the Aut KF. It belongs to the fixed field of the group of automorphisms, 

F automorphisms of K. But the assumption, the hypothesis we started out with is that the 

fixed field of, the fixed field K gamma is exactly F, it is the base field. So that proves what 

we want. So, therefore, the coefficients of g are in fact in the base field.  

Why is that? Because, well they are really symmetric functions of the roots and 

automorphisms necessarily permute the roots. Now, why is that useful? Because, if you look 

at g here, so, we have shown that g is a polynomial in FX, and g is a polynomial on which 

alpha vanishes. So, what does this mean?  

These two things imply that m alpha of x, remember m alpha is the minimal irreducible 

polynomial, I mean, it is the minimal degree polynomial in FX, which has alpha as a root. 

Now, g is another candidate polynomial, it is another polynomial which has alpha as a root, 

then this just means that m alpha of x must divide g of x. The minimal polynomial always 

divides any other polynomial of in FX, which has alpha as a root. Now, why is that, what we 

want? Well, let us just analyze this a little bit. 
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So, if you look at m alpha of x on the one hand, and g of x on the other, g of x is just the 

product. So, what is this? So, let us write gx out, this is now x minus alpha 1 x minus alpha 2. 

So, observe g is now a product of distinct linear factors and m alpha of x divide such a 

product. Now, so let us write this m alpha of x, say a product of irreducible, f1 of x, f2 of x, 

some fs of x, where f1, f2, fs are polynomials in Kx, which are all irreducible. So, I have 

factorized m alpha into a product of irreducible in Kx. 

And this product of irreducibles divides this product of irreducibles, it divides the product of 

the linear factors. This means that each fi, so each irreducible. So, look at any given fi, it 

divides the product of the x, x minus alpha j's, that means, it must, well it must divide at least 

one of those factors. So, each fi had, has to divide at least one of the x minus alpha j for some 

j, some j depending on i of course. So, each fi will potentially divide a different x minus 

alpha j depending on i. 

So, what does this mean? Well, this means that if you write out m alpha of x, which is a 

product, well fi is irreducible. And x minus alpha j is also irreducible a linear term. This just 

means that fi has to equal x minus alpha j, there is no other way out. This x minus alpha j is 

not divisible by any other irreducible. So, this means that m alpha of x, which is the product 

of f1, f2, fs, is therefore the product of terms of the form x minus alpha j. It is a product of 

some of the x minus alpha j's. 

Some of the terms x minus alpha j, may not be all of them, only s of them are involved say. 

So, it is a product of some of these x minus alpha j's, but then that is exactly what we care 

about. This means, in particular, that m alpha of x splits in Kx into a product of distinct linear 

factors. Because to begin with, all these terms here are all distinct. The alpha i is remember 



that distinct to begin with. So, it splits in Kx into a product of distinct linear factors. And that 

is exactly what needed to prove.  

So that that that completes the proof here. I mean, this is really 2 implies 3. So that is what 

we set out to prove. So, we wanted to show that each m alpha of x splits as a product of 

distinct linear factors. So that is somewhat interesting argument again. So, we start with what 

looks a priori, like a strange assumption, or at least a weaker assumption that the 

automorphism group F automorphisms of K has F as its fixed field. And that is actually 

enough to show that the extension is both normal and separable. So rather remarkable 

statement. 
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And let us just quickly end with this remark about finite Galois extensions. So, far everything 

we have said works in general, could be infinite, as well. But here is a little theorem well, 

rather important theorem that we will prove, so that K over F be a finite extension, be a finite 

extension, observe finite extension automatically means algebraic. Then, here is yet another 

characterization, then K over F is a Galois extension if and only if the following holds; if and 

only if the cardinality of the automorphism group is the same as the degree of the extension. 

So, this is a yet another criterion for when an extension is Galois. And again, it is a 

completely new sort of criterion you wish in terms of the degree of the extension. So, it says 

that the extension degree should be exactly equal to the number of automorphisms that are 

available, that are there. And so, to prove this requires, some more ideas and so we will take a 

short detour through the notions of linear independence of characters and theorem of (()) 

(38:48) and so on to and then come back and prove this statement. 


