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We will talk about normal extensions. These play an important role in Galois theory, which is 

where we are eventually headed. So, let me make the formal definition first and then I will 

make some remarks about it. So, let K over F be an algebraic extension. So, F is some fixed 

some based field F and taken algebraic extension of F, be an algebraic extension. 

We say that K is a normal extension or the extension K over F is normal if there exists a 

collection of polynomials. So, if there is a set, let us call it a collection fi of x, i running over 

some index set. So, it could be an infinite collection of polynomials there exists a collection 

of polynomials with coefficients in fx. So, this subset, this collection fi of x is a is a subset of 

FX, such that K is the splitting field of of this collection. So, that is the definition, but let me 

just say what I mean by the splitting field of a collection. We talked about the splitting field 

of a single polynomial.  

So, the splitting field of a collection means that each fi splits over K. So, recall, there were 

two properties for a splitting field of a single polynomial.  So, similarly, here, I have two 

properties, let me now call them capital A and capital B, each fi splits over this field K, it 

splits completely into a product of linear factors and property B says that this does not hold 

for any proper subfield of K. If E is a proper subfield of K containing F, then at least one of 

the fi's does not split over E. So then there exists at least one fi, there exists i in I, such that fi 



does not split over this field E. So that is what we mean by being the splitting field of the 

entire collection. 
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So, you know, just like what we did earlier, so, remark we can replace this condition B 

remark as before, the splitting field of a single polynomial, we can replace B by the 

equivalent condition B dashed, by the equivalent condition, let us call it B dash again, capital 

B dash which says that K is generated. So, the subfield of K generated by F and the roots of 

all the fi's put together. So, the roots of all the fi, this subfield coincides with K itself. It is not 

a proper subfield, but in fact the the whole field. So, and I will sort of leave this proving the 

equivalence of B and B dashed to you, it is along the same lines as what we did earlier for a 

single polynomial. 

So, here are some examples. So, if I take F to be a field Q, and I take K to be the field which 

is Q adjoin with two elements, one of them is the root 2, the other is i, then, this is a normal 

extension. So, claim is that K over F is actually a normal extension. And to prove this, I have 

to exhibit a collection of polynomials for which this is the splitting field. And here, it is sort 

of I mean, if you look at the the elements, we adjoin root 2 and i, it sort of tells you what the 

polynomial should be. So, let us take the polynomial fx equals x square minus 2 and so let gx 

be x square plus 1.  

So, the claim is that K over f, K is the splitting field of this collection f, g. So, claim is that K 

is the splitting field of the collection. Well with this case, just two elements f and g. So, let us 

just verify the two conditions quickly. A, both of them should split over this field. And that is 

fairly obvious, because over this field f splits as x minus root 2 into x plus root 2 and both 



minus and plus root 2 are in this field. gx similarly splits as x minus i into x plus i. And again, 

it is easier to check B dash in this case rather than B itself. 
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So, what B dash says, is that if you take this field Q, so, what is this field K that we are 

talking about? Q of root 2, i and we have Q here. So, what it says is, if you consider, so this is 

your K, this is your F, you take the subfield of K which is generated by Q together with the 

roots of all these polynomials. So, what were the roots? They were plus root 2 minus root 2 i 

and minus i. If you adjoin the roots to Q, you take the subfield generated by this then it 

should give you all of K.  

In this case, that is fairly obvious, because as soon as you adjoin root 2 and i, you get 

everything. So, this is in fact K. So, we have checked condition B dashed also. So, this is an 



example of a normal extension. Now, this is a slightly unsatisfactory state of affairs, because 

to, to check or verify that something is a normal extension, what you have to do really is to 

hunt for some polynomials, you have to find a collection of polynomials for which this is the 

the normal, I mean, for which there is a splitting field.  

Of course, in practice, that is how we will construct examples, you pick some polynomials 

and look for sort of the splitting field of that entire collection. But sometimes we want a more 

intrinsic characterization, meaning, without having to look for those polynomials, maybe in 

terms of other sort of abstract characterizations, and this is sometimes useful. So, let me just 

formulate this characterization as a proposition. So, it says let K over F be an algebraic 

extension. Then the following statements are equivalent, statement 1 says this extension is 

normal K over F is a normal extension.  

So being normal means of course, that it is a splitting field of a collection of polynomials. But 

the other additional thing I am talking about is point number 2 here, which says that if L is an 

algebraic closure. So, you take an algebraic closure of K, if L is an algebraic closure of K, 

and find from L to L is a is a field automorphism, is an automorphism of L such that, when 

you restrict it to the base field F you get the identity. So, this by the way, this sort of thing 

keeps occurring all the time and we usually give it a name. So, we say such a map is an F 

automorphism.  

So, putting the F in front, just says that it acts as identity on F or it fixes F pointwise. So, 

given an F automorphism of the field L, we have, so, if L sorry, let me read this again, if L is 

an algebraic closure of K and phi from maybe I should to rephrase it a little bit. So, let me say 

let L be an algebraic closure of K, then for every automorphism for every F automorphism of 

L, we have the following fact that phi of K equals K. So probably you should just do this on a 

next page. 
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So, let me say for every F automorphism, we have phi K equals K. So, every F automorphism 

of L always preserves K, that is the statement we want to make. And fact 3 says that for every 

alpha in K, take any element of K. So, this is, this statement does not involve the algebraic 

closure, for every alpha in K, the minimal polynomial m alpha of x, this is a minimal 

polynomial of the element alpha over the field F. The min poly m alpha of x splits completely 

over K. 

So, this is saying that if you can show that your extension is normal, that is if you can exhibit 

one set of polynomials for which it is a splitting field, then, in fact, no matter which alpha 

you take from your field, its minimal polynomial will also split completely. In some sense, it 



is a splitting field of every element if you can just take the entire collection. So, I mean, we 

are going to do that in just a moment. So, let me prove this. So, these are three equivalent 

characterizations. The second characterization is in terms of homomorphisms.  

So, let us prove, we will prove it in the following way, we will show that 1 implies 2 implies 

3 implies 1. That will show equivalence of all the statements. So, let me start by showing that 

3 implies 1. So, suppose I know this, that for every alpha in K, the min poly of alpha over K 

splits completely over K. And now I need to show property 1, which is that K is a normal 

extension of F, which means I must exhibit a collection of polynomials for which K is the 

splitting field. 

So now here, the collection of polynomials is obvious. So, consider the collection of 

polynomials, just take the minimal polynomials m alpha of x for every alpha in K. And this is 

a very large collection, if you will, of polynomials with coefficients in F. Clearly, K is the 

splitting field of this collection. Meaning when I say clearly, of course, I mean, assuming 3. 

So maybe I should say, clearly, if I assume 3, then it implies that K is the splitting field of 

this collection. Why? I need to check two properties, that every polynomial in my collection 

splits, that is what 3 says. 

And the fact that it is a splitting field says that, if I take F and take the roots of all these 

polynomials, the field subfield they generate should be the whole field. But remember, alpha 

is the root of m alpha of x. So, what I am doing really is to F, I have to adjoin every single 

alpha in my, in K. So of course, when I adjoin every alpha in K, of course, I am going to get 

K. So, this is sort of the trivial direction such that, if you have this entire collection of 

minimal polynomials, splitting over K, then definitely it is a normal extension, because you 

can take that whole collection as your collection trivial. 

Now, let us show 1 implies 2. So, this means that I am going to assume 1 that it is a normal 

extension, meaning there exists a collection for which it is a splitting field. And I will prove 

2, which is that any homomorphism of the algebraic closure will have to preserve this 

subfield K. So, let us start with the definition, let fi of x i ranging over some index set, subset 

of FX be such that K is its splitting field. And what are we supposed to do? We are supposed 

to take an algebraic closure. 
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So, let us prove 2 now, to prove that we will start with an algebraic closure. So, let L be an 

algebraic closure of K. And let us take a automorphism of L which is identity on F be an F 

automorphism. Now we just need to show that phi of K is K. Now, need to show phi K is K. 

So, this, this sort of argument already appeared, in fact, we need to show equal K. So, this 

sort of argument already appeared when we were proving uniqueness of the splitting field. In 

fact, it is exact same argument. So, let us just quickly repeat it. 

So, what is the argument K recall is nothing but the subfield of, well of itself if you wish, or 

the subfield of L, which is obtained as follows, you take F, and it is generated by F and the 

zeros of all these polynomials. So maybe I will just write it in words K equals the subfield of 

itself or L, that hardly matters. So, K is nothing but the subfield of L generated by F and the 

roots of all the fi's put together, but we observed the following statement that in the proof of 

the uniqueness of splitting fields, that if alpha in L is a root of fi, then phi alpha is also a root 

of a fi. 

Well, in this case, again in L. Why is that? Because, I mean, in the earlier proof, it was L and 

L dash when we were trying to show uniqueness of splitting fields, here it is an 

automorphism both sides we have L. So, if alpha is a root of fi, then when you apply phi to it, 

it continues to be a root of fi, in again in L. And why was this? Because the map phi was 

identity on the base field, it was identity on the coefficients. So, you concluded that phi alpha 

is again a root. So, what does that mean?  

It says that, since K is just the subfield of L generate by F and all the roots of the fi's, then 

you apply phi to K, which means, you have to apply phi to all the roots of all the fi's and see 

what you get. But the roots of fi's under phi, map again to the roots of fi's. So, phi is sort of 



preserves the set of all the roots of all the fi's, that collection is preserved by phi. So, when 

you apply phi to K, what are you going to get? Well, you, the image certainly lies inside the 

subfield. So, phi maps F to F also, its identity on F.  

So, F goes to F and the roots of fi map back to the roots of fi. So, it is just the subfield 

generated by F and, well, again, the roots of fi. But that is exactly K once more. So, if you see 

if you look back, it is the same proof really for the uniqueness as well. So, phi K is a subset of 

K. And now we repeat the argument with phi inverse in place of phi, repeat with phi inverse 

in place of phi. And well, when you do that, what do you conclude?  

You conclude that phi inverse of K is a subset of K and therefore, phi K is equal to K. And 

that is exactly what we needed to prove in part two of this proposition that phi, whenever you 

take an automorphism an F automorphism of L, then K is preserved by that automorphism. 

So that is, that is two parts of what we need to show, 3 implies 1, 1 implies 2 and let us finish 

this off by showing that 2 implies 3. 
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So, what does this mean? We have to assume part two, which means that, this stability under 

automorphisms under F automorphisms. And we need to show 3, which is that every element 

alpha, so take an element alpha in K, and look at its minimal polynomial, be it is minimal 

polynomial over the base field F. So, in other words, this is an irreducible polynomial, 

irreducible monic polynomial satisfied by alpha coefficients in F. 

Now, we need to show that m alpha splits completely over K. So, let us assume the contrary 

suppose m alpha of x does not split. Now, what does that really mean? Well, it says, so 

remember, L is the algebraic closure, I have K, I have F. Now I have this polynomial m 

alpha. And there is an element alpha in K, alpha is the element I started off with, the 

polynomial m alpha of x. Well, that is got coefficients in F, so maybe I will write it down to 

as m alpha of x is a polynomial with coefficients in F, m alpha has certainly one root in K, 

because alpha is certainly a root of m alpha. 

But what we are assuming here is that m alpha does not split over K. In other words, when I 

write out the factorization of m alpha of x into a product of irreducible over K, all factors are 

not linear, I do not get n roots in K. So not all roots of m alpha, lie in K. So, some roots, you 

will only see in higher extension fields. So, in particular, I will certainly find all n roots in L 

for sure. So, let us let us go to L so that m alpha splits completely there. 

So, since L is algebraically closed, here is what I know, m alpha of x will certainly be, I can 

write it as x minus alpha 1 x minus alpha 2. So, I am just going to assume, I mean, m alpha is 

of course monic here, because it is a minimal polynomial for some alpha 1, alpha 2, alpha n 

coming from the algebraic closure. 



Now let us, let us assume that the first root alpha 1 is alpha here. That is the alpha I began 

with. So, let us let us call alpha 1 as that alpha. Now, the assumption we have made m alpha 

does not split completely over K means that at least one of these alpha i's is not in K. So, by 

assumption, so maybe I should call this something star by star there exists some alpha i which 

is not in K. 

So, let me just call it alpha 2, say, let us just remember our alphas if necessary, and say alpha 

2 is not in K. So alpha 1 is in K, but alpha 2 is not in K. And that is somehow the the key 

point here. So, I have L, K, F. And the situation is I have one root in K. And I find another 

root, which is not in K, but, you know, sort of outside K, it is only in L, for example, 

whatever it is, it is not in K, it is outside is what I meant. 

Now, this is going to be what we will use in order to get a contradiction, we will contradict 

the hypothesis 2, and what did the hypothesis say? It said that every homomorphism, let us go 

back and see every homomorphism or automorphism of L, which preserves F pointwise must 

map K to itself. Now, because we now have alpha 1 in K, and alpha 2, which is not in K, let 

us sort of use these two guys to define a homomorphism. So, the idea is to try and define a 

homomorphism, which will map alpha 1 to alpha 2. If you can do that, then we would have 

somehow gotten a contradiction to 2. So that is what we will try and do now. 
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So, again recall from the previous or initial discussions on adjoining symbolic adjunction of 

roots and so on, that if alpha 1, so, since alpha 1 and alpha 2 are both roots, they both have 

the same minimal polynomial over F. Because of course, what is the minimal polynomial? 

That is what we call m alpha of x, both of them are roots of that and m alpha is irreducible. 



So, it must be the minimal polynomial of alpha 2 as well. So, since they both have the same 

minimal polynomial, we know that there exists an isomorphism of fields, from where to 

where? From F adjoined alpha 1 to the field F adjoined alpha 2. 

And you can, you can either think of this symbolically, so what is, so I want to say, think of 

all these sitting inside L for example, for the moment forget K. So, there is F here. So, we 

will bring K back into the picture afterwards. But for now, just look at F alpha 1 and F alpha 

2, what we know is that there is an isomorphism between F alpha 1 and F alpha 2, which is 

identity on F. So, there is an F isomorphism, it is called this map phi, there exists an 

isomorphism phi from F alpha 1 to F alpha 2. 

So, recall this this statement. So, recall from the initial discussion on adjunction and so on, 

and if you quickly recall why this was the case, because, in fact, both of these fields are, 

abstractly isomorphic to the field FX the polynomial ring modulo the ideal generated by m 

alpha of x. m alpha x is the maximal ideal here. And so, these both these guys are actually 

isomorphic to this abstract field FX modulo m alpha x. 

So that is, that is how one sort of deduce that. So, there is an isomorphism, further with an 

additional property such that it maps alpha 1 to alpha 2 with phi of alpha 1 equals alpha 2. So, 

this is the key property that we will use now. So, I am guaranteed that such a such a map 

exists. Now, so this is sort of the first statement to recall. 
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Now, the second statement, given an isomorphism. So, given an isomorphism from one field 

to another, this case, F alpha 1 to F alpha 2, so, I am given an isomorphism of fields, then it 

extends to an isomorphism of their algebraic closures. Now, in this case, L is the algebraic 

closure of both F alpha 1 and F alpha 2. So, the universal property says that phi extends to an 

isomorphism of L, to an automorphism of L if you wish. 

Well, in this case, I have taken L to be the universal, to be the algebraic closure on both sides. 

So, given an isomorphism phi from F alpha 1 to F alpha 2 there exists phi tilde from L to L, 

such that phi tilde when you restrict it to F alpha 1, it coincides with the map phi. So, this is 

the other property that we need to recall in the construction of algebraic closures. But now 

observe that this exactly contradicts, the hypothesis 2.  



So now observe that this map phi tilde from L to L, it is an automorphism of L does the 

following, it maps well it it coincides with phi on F alpha 1, so this just does whatever phi 

does to alpha 1. And remember that is the special property of of phi that we talked about is 

that it maps alpha 1 to alpha 2. So, phi tilde maps alpha 1 to alpha 2 in particular, recall, we 

assumed that alpha 1 was an element of K and alpha 2 was not an element of K. This was our 

assumption. So, this is what we had assumed. So, our assumption was that this happens. 

So, what does this mean? This says that phi tilde therefore phi tilde of K is not K, it is 

mapping one element of K to an element that is outside K. And so, this contradicts our 

hypothesis 2 and completes the proof of this proposition. So normal extensions are, well, they 

can be thought of as splitting fields of collections of polynomials. But in terms of 

homomorphisms, they are also sort of the extensions with the property that automorphisms of 

the algebraic closure always leave, normal extensions, stable, they fix them, automorphisms 

which are identity on the base field. 

And so, in some sense, the remarkable point, one other little remark here, is that this last 

point here is also rather remarkable, it says that, if your extension is normal, so it is the 

splitting field of a collection of polynomials, then every alpha in in the field has a minimal 

polynomial, which also splits completely, which means that if one root I mean alpha is of 

course, one root of its minimal polynomial, what we are saying is that all the roots of that 

minimal polynomial must actually belong to the, the field K. And so that is somewhat 

remarkable. 
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So, for example, if you recall the example of a normal extension we gave, if you take the 

field Q and adjoin both root 2 and i to it. I think of it as a normal extension of Q. So of 

course, you know, we exhibited those two special polynomials for which this is the splitting 

field, but the third equivalent property of this proposition says you can in fact take any alpha 

you want in this field K. For example, I can take alpha to be root 2 plus 3i, this is an element 

of K or in fact, more general combinations, if you wish, say 1 plus root 2 plus 3i is another 

element. 

So, suppose I pick this element alpha in my field K, then what it says is, you look at its 

minimal polynomial m alpha of x over Q. So, this is the minimal polynomial of alpha over Q, 

then all roots of this minimal polynomial will also lie in this field K. So, all roots of m alpha 

x lie in K. So, it or in other words the minimal polynomial splits completely over K, that is 

what it means. Well, it is somewhat remarkable because what it says that the other roots are 

the, sometimes we call it the other conjugates of alpha, the other roots of its minimum 

polynomial are also somehow combinations of root 2 and i e for example, that is what this 

proposition is saying. 


