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In this lecture, we are going to prove the existence of algebraic closures. We begin with the 

definition of an algebraic closure. A field extension K over F is called an algebraic closure, if 

a two conditions are satisfied. The first is that, K is an algebraic extension of F. And the 

second condition is that, K is algebraically closed. 

In this case we call K an algebraic closure of F. We have already seen an example of an 

algebraic closure. We have the complex numbers containing the rational numbers. And in 

between we have Q bar, which we defined to be those complex numbers, which are algebraic 

over Q. And we have seen that Q bar over Q is an algebraic closure.  

In the case of the rational numbers, we were lucky to have this field of complex numbers to 

work with. But what about fields like finite field, Fq with Q elements? Or what about a field 

like rational functions with say complex coefficients or rational functions with coefficients in 

a finite field? Or fields with multiple, rational functions in multiple variables? Each of these 

fields it turns out, admits an algebraic closure. 
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And what I am going to show you in this lecture is a proof that every field admits an 

algebraic closure. Now, the proof uses a very deep axiom of mathematics called Zorn's 

lemma. So, let us talk about Zorn's lemma. I will state Zorn's lemma first, and then we will 

carefully go over the meaning of each of the terms that appears in the statement. 

So, Zorn's lemma says that if you have a partially ordered set P, where every chain has an 

upper bound, then P has a maximal element. So, that is the statement. Let us now break it 

down and see what each of these terms that occur in the, in the statement means. So, to begin 

with, let us talk about partially ordered sets. 

What is a partially ordered set? A partially ordered set is a set up together with a relation less 

than or equal to, we call it less than or equal to, it is a partial order relation. So, P is a set and 

this is a relation on P. And it must satisfy the following axioms. The first axiom is, the axiom 

of transitivity; which means that if x is less than or equal to y, and y is less than or equal to 

say, for x, y, z in P then x is less than or equal to say z.  

So, this is a property that we are familiar with that the order in real numbers or integers 

satisfies. And the second property is called reflexivity. So, reflexivity and it says that x is less 

than or equal to x for every x in P. And the third property is called antisymmetry, which says 

that, if x is less than or equal to y, and y is less than or equal to x, for any x, y in p, then x 

must be equal to y. 



So, these three properties are all properties that you are familiar with the natural numbers, the 

real numbers or the integers, all have an order relation which satisfies these properties. But 

what is more important is what is missing. So, it is not true in a partially ordered set, it does 

not have to be true that any two elements are comparable. 

So, any two real numbers if you are given either they are equal, or one is less than the other, 

or the other way around. But in a partially ordered set, you could have pairs of elements for 

the x and y such that you neither have x less than or equal to y, nor do you have y less than or 

equal to x. So, this is weaker than the usual notion of order, which then in this context is 

called total ordering. 

So, let us look at an example. Let us look at X any set and let 2 to the power x denote the 

power set of X. Then 2 to the power x the power set of X together with set containment, the 

relation of set containment is partial. Clearly, if a set x is contained in the set y; and a set y is 

contained in a set z, then the set x is contained in the set z. Then secondly, every set is 

contained in itself.  

And thirdly, if a set x is contained in the set y and a set y is contained in the set x, then x and 

y are equal. So, the power set of any set forms a partially ordered set under containment. And 

note here that this is not a total order, because you can find two sets x and y such that neither 

x is contained in y nor is y contained in x provided of course, that the capital X the big 

universal set has at least two points.  

And so now we have explained what is the meaning of partially ordered set. So, it is like an 

ordered set, but partial where not any two elements are comparable. 



(Refer Slide Time: 08:14) 

 

Now next we come to the notion of a chain. So, let P be a partially ordered set. So, we define 

a chain, a subset C of P, where P is a partially ordered set. Now I will use this shorthand po 

set to denote partial, for partially ordered set. So, this p stands for partially, o stands for 

ordered, and set. So po set is just short for partially ordered set. 

A subset of a po set is called a chain. If for all x and y in C, either x is less than or equal to y, 

or y is less than or equal to x. So, what we are saying is that when you take the partial order 

and restrict it to C, then you get a total order. Let us look at an example or a special case of 

the previous example. Consider N to be the set of natural numbers. And let us look at 2 to the 

power N under with with set inclusion.  

So, this is a po set. And let box n denote the set as we have in algebra 1, the set of all integers 

between 1 and n. Then you look at C equals the collection box n, n belongs to N. This is a 

subset of 2 to the power N and C is a chain. Because any two elements of C will be of the 

form m and n and m is less or m is contained in n, is the same as saying that m is less than or 

equal to n. So, any two elements of C will be comparable. The ordering on the elements of C, 

will match with the ordering of the corresponding integers. 
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So, we have also now defined chain and now, it remains to say well next I must tell you what 

does it mean for a chain to have an upper bound. 
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So, let us go to the definition of an upper bound. If P is a partially ordered set and S is any 

subset of P, then an element x belongs to P is called an upper bound of S if, s is less than or 

equal to x, for all s in S. So, this element x is an upper bound for S means that it bounds every 

element of S. So, that explains upper bound. 

In the example, if I take S to be, well what did we take last time, I called it C, the only upper 

bound for C is N itself. No other set contains all the subsets that are in the C. This is the only 

upper bound. So now we have also explained what is an upper bound. And this one last 

technical term here, which is that of a maximal element. So, what is the maximal element?  

If P is a po set, S any subset, then a maximal element of S is an element S0 in S such that for 

any x in P, if x is greater than or equal to S0, or maybe I should say it like this for any x in S, 

if x is greater than S0, then x is equal to S0. So, there is no element of capital S, other than 

itself of capital, other than S0 which is greater than or equal to S0. So that is the definition of 

a maximal element. So, we have defined all the terms in this. 
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Let us just look at an example of maximal element. This you would be familiar with if you 

have done ring theory. So, let P be the po set of all, set of all ideals in a commutative ring R. 

Then a maximal element, and let us say we need to tell you what is the partial order, so 

partially ordered by containment. Actually, I do not want all ideals; I want all proper ideals, 

all proper ideals. Then the maximal elements of P are precisely what we call maximal ideals. 

More specifically, if I take, if I take P to be ideals of Z, then then maximal elements are the 

ideals p generated by primes. And if I take P to be ideas in Ft where F is a field, then 

maximal elements are generated by ft, where ft is irreducible. This actually holds in any 

principal ideal domain. The maximal ideals of principal ideal domain are ideals generated by 

irreducible elements. 
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So, now we know all the terms that appear in the statement of statement of Zorn's Lemma. If 

P is a partially ordered set, where every chain has an upper bound, then P has a maximal 

element. Let us look at an example where the hypothesis of Zorn's lemma does not hold and 

the conclusion does not either. So, take for example, P to be the set of power set of natural 

numbers under containment. And let us take S to N, where N is the natural number.  

So, in this of course, this is a chain and S has upper bound N. But let us look at now P prime 

to be set of all finite subsets of N. So, let us look at all sets, A subset of N, such that A is 

finite, partially ordered by containment. Then S is still a subset of P, every set in NS is is 

finite. So S is a chain in P prime. But we saw that the only upper bound for S in P was the set 

of natural numbers itself. And so, S has no upper bound in P prime. 

Also, there is no maximal element in P prime. P prime has no maximal element. Because if 

you were to take any finite subset of the natural numbers, you could always add one more 

element to it, one more natural number to it and get another finite subset of the natural 

numbers. So, P prime has no maximal elements. 
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Now let us look at a good example of a maximal element. So, let us look at Q bar. So, Q bar 

is a maximal element of the po set P equals E over Q, where E is an algebraic extension. Let 

us just say E, where E is an algebraic extension. In fact, if you have any algebraic extension 

of Q, it is contained in Q bar, because E Q bar contains all the elements of the complex 

numbers which are algebraic over Q. And so, every algebraic extension is contained in Q bar. 

And therefore, Q bar is the maximal algebraic extension, it itself is algebraic of course. 

So, now, we can come to the statement of the theorem, which says that every field admits an 

algebraic closure. The theorem states that, so, this is the existence of algebraic closures, the 

main theorem of this lecture. Let F be any field, then F admits an algebraic closure there 

exists an algebraic closure K over F. 

Now for the proof, before we jump into the proof, so, we will prove it by applying Zorn's 

lemma, we will construct certain partially ordered set of extensions and will show that all 

chains in that collection in that in that partially ordered set have upper bounds and then a 

maximal element of that partially ordered set, we will show it to be an algebraic closure of F. 

But we need one slightly technical lemma for that. And the lemma is that if K over F is an 

algebraic extension, then the cardinality of K is less than or equal to the maximum of aleph 0 

which is the cardinality of the natural numbers countable and the cardinality of F itself. We 

have seen this kind of argument when I explained to you that Q bar is a countable set.  



So, basically, if you take an element alpha in K and send it to the irreducible polynomial of 

alpha, this defines a finite to one function from elements of K to the set of irreducible 

polynomials in Ft. And the cardinality of the set of irreducible polynomials in Ft, you can 

show quite easily is this number here; I will call it CF, maximum of aleph 0 and the 

cardinality of F. So, I will, I will not give you all the details of this, just think through it. 
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In any case, we will just use the statement. And now let us go on to the proof. So, proof of 

existence. So, to start with let S be a set with sufficiently large cardinality, such that firstly, F 

is contained in S; and secondly, cardinality of S is greater than CF. So, it is cardinality is 

strictly greater than the cardinality of any algebraic extension of F. 

Now we will define the partially ordered set P. Let P be the set of all field extensions K over 

F, where K is realised as a subset of S, and K is algebraic over F. And define a partial order 

by saying that K1 is less than or equal to K2, if and only if K1 is a subset of K2. It is just the 

containment partial order. 

And in particular, this would mean that K1 is a subfield of K2. So maybe I should be a little 

more careful because we talk about sets and sets with the structure of a field. So maybe I will 

see if K1 is a subfield of K2, or K2 is an extension of K1. Now, I claim that every chain in P 

has an upper bound. And the proof is the following. 



So, suppose Ki i in I, is a chain in P. May not be accountable chain, any chain. Then let K be 

the union of all these sets. I will define a field structure on K. So, given x and y in K, we have 

x belongs to Ki, y belongs to Kj for some i j in I. 
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Now, if i is less than or equal to j, then Ki is contained in Kj. And so, define x plus y to be the 

sum in Kj. And you can also define x plus x times y to be the sum in Kj. So, just define sum 

and product to be sums and products in the larger of the fields containing these elements. And 

then, because of the fact that our partial order insists that the subsets be sub fields, this will 

define give rise to a well-defined notion of sum and product in K and make K into a field. 

These operations endow K with the structure of a field. 

Now, I need to show that K is algebraic over F. But this is easy because, if you take any alpha 

belonging to K, then alpha belongs to Ki for some i belongs to I and so, but Ki is algebraic 

over F, so, is algebraic. So, alpha is algebraic over F. And so, every chain in P has an upper 

bound, we have proved this. And so, the conclusion is by Zorn's lemma P has a maximal 

element. It would typically have more than one maximum element, but has at least one 

maximum element, call it choose one maximal element and call it K0. 
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I claim that K0 over K is an algebraic closure. Since K0 over K is in t we know that K0 is 

algebraic over K. So, all I need to show is K0 is algebraically closed, suffices to show that K0 

is algebraically closed. What we need to show is that every polynomial in K0 factors into 

linear factors. So, if Pt belongs to K0t does not factor into linear factors, we will try to get a 

contradiction.  

Firstly, I want to reduce to the case where Pt is reducible. If Pt is not irreducible, then you 

factorise Pt into its irreducible factors. Each of those irreducible factors will not, at least one 

of those irreducible factors will not be a product of linear practice. So, at least one irreducible 

factor of Pt in K0t is not a product of linear factors, because, if each of these factors was a 

product of linear factors, then Pt itself would be a product of linear factors.  

So, we can assume that Pt is irreducible, just replace Pt by its, one of its irreducible factors. 

Now, what you do is, realise the field extension K0t mod Pt as a subset. So, let us call this E. 

So, Pt is irreducible. So, Kt mod Pt is a field as a subset of S with K0 sitting as constant 

polynomials with sorry, yeah. So, we already have K0 is a subset of S. So, with K0 sitting as 

constant polynomials. 

The reason we can do this is that S has a much larger, has a larger cardinality than K0 

because the cardinality of K0 is this cardinality that we have written down here, the 

maximum of aleph 0 and the cardinality of S F. But S has cardinality strictly larger than that 



cardinality CF. So, then there is enough space inside S to take this polynomial ring and 

embed it inside S, in a way that puts K0 as constant polynomials. 
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Then E is algebraic over K0 and K0 over F is algebraic, which implies that E over F is 

algebraic. This contradicts our assumption that K0 was maximal in P. So, the proof of the 

existence of the algebraic closure of any field is a fairly simple application of Zorn's lemma. 

Well, you have to be careful; we needed to fix the set S, so that we do not run into problems 

from set theory. But that is about it. 


