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As we have seen in order to construct field extensions. We need irreducible 

polynomials. In this lecture I am going to explain to you Gauss’s Lemma which helps 

us to understand when some polynomials are irreducible. The statement is the 

following. So this theorem is called Gauss’s theorem. It says that if ft is a polynomial 

with coefficients in the integers.  

So this z square brackets t means we are looking at polynomials in the variable t 

whose coefficients are all integers and suppose the content of f is 1. So I need to 

explain to you what the content of f means. So if you have a polynomial ft equals a 

naught plus a1 t, its a polynomial in the variable t plus an to the n. Then the content of 

f denoted cf is defined by, cf is just the gcd of the numbers a naught a1, a n.  

So if the content of a polynomial is 1, it means that the gcd of its coefficients is 1. So 

if you have a polynomial with content 1 and we write ft as a factorization ut times vt 

in qt. So I am not claiming that ut and vt have integer coefficients, I am just saying 

that ut and vt are polynomials with rational coefficient.  

Then there exist rational numbers a and b such that ft is equal to au t, bv t where these 

scalings of the polynomials have integer coefficients au t, bv t belong to zt. So 



basically what it is saying is that if you have factorization in qt, then you also have a 

factorization in zt. And this proof of this lemma this theorem rather, Gauss’s Lemma 

is another lemma, which is also due to Gauss, which says the content is multiplicative.  

So the proof uses the following lemma. This is also due to Gauss. For ut, vt in Zt the 

content of u times the content of v is equal to the content of cuv. So the content of the 

product of 2 polynomials is the product of their contents. N 

ow to prove this lemma here we can assume that the content of u and v is 1 because if 

the content of u is not 1 or the content of v is not 1, then we can divide u by its 

content and get a polynomial with content 1. Similarly we can divide b by its content 

and get a polynomial content 1. So we can assume without loss of generality and then 

we need to show that the content of uv is equal to 1.  

For this we will use a technique that is very useful for analyzing polynomials which is 

the reduction of coefficients module of prime. Now we need to show that the content 

of uv is 1. For which it is enough to show that no prime divides all the coefficients of 

uv. So we will just use reduction modulo p. So let me just explain that.  

(Refer Slide Time: 5:07) 

 

So the idea is reduction modulo p. So if you have a polynomial ft equals a0 plus a1 t 

plus a n t to the n with integer coefficients. Then you can take each of these 

coefficients and reduce it modulo b. So define f bar t to be a0 bar plus a1 bar t plus a n 



bar t to the n where ai bar is the image of ai in z mod pz. So this is a polynomial in z 

mod pz.  

Now this reduction map is a very nice property that if I take fg bar t, then this is f bar 

g part t, so this reduction map is a ring homo-morphism now to say that a polynomial 

is primitive it is enough to show that for every prime p its reduction modulo p is 

non-zero because that would mean that the prime p does not divide all of its 

coefficients. So the observation is ft belong to zt is primitive. It has content 1, if and 

only if its reduction mod p is non-zero for every prime p.   
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So now coming back to this, we want to show that if, so let us just put this definition 

down f is primitive if cf is 1. That is just the definition of primitivity and so what we 

want to show is that the product of 2 primitive polynomials is primitive. And so we 

take the product and we want to show that its reduction modulo any prime is non-zero. 

So suppose that there was a prime p with respect to which its reduction was 0. 
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So suppose p is a prime such that the reduction of uv mod p is 0. But then note the uv 

bar, the reduction of uv mod p is u bar p bar which implies that u bar is 0 or v bar is 0 

just because the ring z mod pzt is an integral domain. But this cannot happen because 

we know that u and v are also primitive.  

So this concludes the proof of this lemma here that the product of 2 primitive 

polynomials is again primitive. Now we are ready to prove Gauss’s Lemma, the main 

theorem of this lecture. So suppose we have fx equals, ft equals ut vt where ft is in as 

per hypothesis is has integer coefficients has ut, vt have rational coefficients.  



Now if you have a polynomial with rational coefficients you can clear out the 

denominators of all its coefficients and get a polynomial with integer coefficients. Say 

you multiply all the coefficients by some integer n and you get all integer coefficients. 

You can choose this carefully enough so that the resulting polynomial is primitive.  

So just take for example the LCM if all the denominators and that should do the trick. 

So there exist rational numbers a and b in q such that aut equals, aut belongs to zt and 

content of aut is 1. That is it is primitive. Bvt belongs to zt and content of bvt us equal 

to 1 and we have ft equals aut. So here we would have a b times ft is aut bv t.  

But recall that in Gauss's Lemma we assume that f itself is primitive. That c of f is 1. 

And so c of f is 1 then c of a b times f is going to be ab but here on the right hand side 

we have a product of 2 primitive polynomials. So ab times f should also be a primitive 

polynomial which implies that ab is equal to 1 and so we have that ft is equal to aut 

time bvt as needed. This concludes the proof of Gauss's Lemma.  

When we talk about field extensions we are often dealing with monic polynomials. 

For example, when you construct the irreducible polynomial of an algebraic element 

you can scale it so that it becomes monic. And so if we just talk about monic 

polynomials the Gauss's Lemma takes a nice monic polynomials with integer 

coefficients are obviously primitive because the leading coefficient is 1. 
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So here is the corollary of Gauss's Lemma. If ft belongs to zt is monic and we write ft 

equals ut times vt where ut and vt belong to qt are also monic. The ut and vy are in zt. 

But the proof is very simple. Just apply Gauss's Lemma. So what we have is, ft is aut 

times bvt. Then a b are rational numbers, aut, bvt are primitive.  

But aut bvt belongs to zt and if the product is monic then their leading terms must be 

equal to 1. The leading term of aut and bvt must be equal to 1. So this implies that a 

and b are integers. So what we have is that this implies that a times, well we know 

that a times b is 1. So this implies that a equals b equals 1. 

So let us look at an example. A very interesting example of an algebraic integer is the 

nth root of unity define zeta n to be e to the 2 pi i by n this is a complex number and 

then zeta n satisfies the polynomial. It is an nth root of unity. So it is a root of t to the 

n minus 1. So zeta n is an algebraic polynomial.  

We can construct the evaluation map, substitution map qt to c obtained by taking t to 

z time and the kernel of phi zeta n, let us say that is let us call that phi n of capital phi. 

It is actually denoted as capital vn of t. We can assume that this is monic by scaling it. 

So let us say monic and it will be reducible. This is called the nth cycloatomic 

polynomial.  

So now pn is a factor of t to the n minus 1. T to the n minus 1 is a primitive monic 

polynomial. And so what we have is v and t is a polynomial with integer coefficients. 

We can compute some examples of e and t for small cases by hand.  
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So for example, let us write down n and v and t for some small example. So if n is 

equal to 2, then we are looking at zeta 2 which is a square root of 1, which is minus 1. 

So we just get t plus 1. Minus 1 satisfies the reducible polynomial is the root of the 

irreducible polynomial t plus 1. If n equals 3 then we are looking at cube roots of 

unity.  

We are looking at e to the 2 pi i by 3. Are these satisfy the equation t squared plus t 

plus 1 which turns out to be irreducible over q. It is a quadratic polynomial. So its 

reducibility just means that there are no roots and if we take n equals 4, then a little bit 

of thinking, you may come up with t squared plus 1. So n equals 4 means we are 

looking at fourth roots of unity which are 1i minus 1 and minus i.  

Zeta 4 is just i e to the 2 pi i by 4 and that is just i. And zeta 5 it turns out that its 

irreducible polynomial is t to the power 4 plus t cubed plus t squared plus t plus 1 and 

plus 6 it turns out that the polynomial is a bit smaller than the earlier cases. It turns 

out that it is t squared minus t plus 1.  

So that is a few examples of cycloatomic polynomials and in the next lecture we will 

try to compute some infinite families of cycloatomic polynomials.        

 

 


