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Ordinary Differential Equations
Lecture - 84
Properties of the Dirac Delta function

So, we have introduced the Dirac delta function and we have seen some of its fundamental
properties. So, in this lecture, we will go further and look at many useful properties of Dirac

Delta function and you know learn to work with it, right.

So, a full-fledged study of Dirac delta function would require looking into the notion of
generalized functions and you know there is quite some theory with it, but our philosophy
will be to learn to work with Dirac delta function. And, in this you know approach we will
look at many examples where how you know we learn how to play with it and you know

develop a facility ok.
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Properties of the Dirac Delta Function.

We introduced the Dirac Delta function, and have looked at some of its fundamental properties. Let us take a look at some of them here.

Derivatives of the Delta Function.

The rule of thumb is: whenever you have to work with a Delta function, find a way to integrate it out. Adopting this rule, we
give meaning to the derivative of the derivative the Delta function. Given some arbitary function ¢(x), let us consider the inte

f o008/ (t- ) d.

Integrating by parts, we have:

f "o x-a) dx = 6w - a]” - f ir-0 ¢ ®dx = -¢a).

Integrating by parts two times, we can show that :

So, one is you know a useful property of the Dirac delta function is you know when you are
working with derivatives of the delta function. So, we have seen that you know if there is a
delta function the best thing you can do is to try and integrate it out, right as such it is a, it is a
strange beast to just work with the function itself I mean technically speaking is perhaps not

even a function, right.



But, I mean we understand it as an object which becomes arbitrary large at one point right it
is this impulse kind of a thing and it is 0 everywhere else and you know the best you can do is
you know integrate it out and that is true also with functions of you know the delta function

like if you take the derivative of this function what does it do, right.

So, in order to understand this we look at what it does when it is integrated out. So, consider
some test function you know phi of x and you know integrate with you know after
multiplying it with this derivative. So, you have a delta function which is peaked about a
point a. So, you take the derivative delta prime we define it like this and then let us see what

happens if you multiply it by some test function and integrate.

And, so, we integrate by parts. So, you have u dv is given by uv minus v du that is the rule
right by which integration by parts happens. So, you have u dv. So, uv will be just phi of x

times delta of x minus a and minus infinity to plus infinity.

So, in these kinds of situations you take the test function to be such that it dies down at both
plus infinity and minus infinity right. So, and so you know the value of this function at both

plus infinity and minus infinity delta function is just 0.

So, this boundary term as it is called is 0 and then you are left with minus phi prime of a,
right. So, you know there is just a delta function and the derivative has shifted to the test

function and then you get minus phi prime of a.

So, we see that you know the derivative of the delta function is, you know, it is as if it will
take a function and you know it can point out the value of the derivative of your function at
up at a given point right. So, we can also go ahead and try to see what happens if you take the

second derivative.

So, if you do phi of x del prime of x we can show that it will be pull out for you in fact, phi
double prime of a, right. So, the delta function will pull out for you the value of a function at
a point. The first derivative of delta function seems to pull out the value of the derivative of
the function at a particular point, but there is a minus sign which comes in as well, second

derivative the minus sign goes.

And, so in fact, you can show by successive integration by parts this general result that the

nth derivative of the delta function you know can pull out for you the nth derivative of the



function itself at that point, but there is also this factor minus 1 to the power n which you

know gets tagged along, right. So, this is the result.
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Integrating by parts two times, we can show that :
« /1, /7,
$(x) 6" (x-a)dx = ¢"(0)
=00
In fact, with the aid of successive integration by parts, a general result for the ™ derivative of the delta function can be shown to hold:

f 2600600 -aydx = (-1 ¢ @),

Other properties of the Dirac Delta function
Let us recall that the Laplace transform of step function is:

e—x )]

Luy(0)] = , 10>0.

s

The Laplace transform of the derivative of this function must be:

e—s )

.C[u;o(t)] =5 | ~0=¢70,

But we have seen that e 0 s the Laplace transform of the Dirac Delta function centred about ). Thus, we see

Now, there are other properties of the Dirac delta function which are useful. So, let us look at
you know you know one such thing, but approach it from the point of view of the Laplace

transform. We have seen the Laplace transform of a step function.

So, the Laplace transform of a step function is you know is given by e to the minus st naught
divided by s, right. So, the step function you remember is something which is 0 all the way

up to t naught and then it becomes one beyond that.

Now, we remember that you know the step function has this Laplace transform ah. So, the
Laplace transform we also saw that the property of Laplace transform is that the Laplace
transform of the derivative of a function you know is just going to be multiple or you know
you take the Laplace transform of the function itself and multiply by s and you have to

subtract the value of the function at 0 which in this case is just 0.

So, you get e to the minus st naught, right. So, we see that you know property from the
properties of Laplace transforms the Laplace transform of the derivative of this function step

function will be just e to the power minus st naught.
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But we have seen thate™* 0 is the Laplace transform of the Dirac Delta function centred about ). Thus, we see that:

u;O(r) = 6(t - fo).
‘This is also a property that we can obtain directly by showing that:
© ; 0
dtu, (1 f(6) = dts(t- 1) () = ftg).
0 0 e

To sce this, we simply employ integration by parts, while also requiring that the test function vanishes outside of some finite interval.

Let us look at several more properties:
x0x) =0
To check this, we introduce some test function ¢(x) and multiply by the above function and integrate:

[ " dx[xo)g0 = f " dxlr o]0 = 0.

xd(x) = 0.

sdozel2

But, we have seen that in fact, e to the minus st naught is the Laplace transform of the Dirac
delta function centered about t naught. So, thus you know we argue that in fact, the derivative
of the step function is the delta function, right. So, this is in fact, one way in which one could

have defined the delta function as the derivative of this you know there is a step function.

So, for all values t less than t naught of course, the function the derivative is 0 and for all
values t greater than t naught the derivative is 0. But, exactly at that point t naught there is a
jump whose magnitude is equal to 1 and so, that is why it is the Dirac delta function, right.

So, which is also confirmed from this Laplace transform idea.

But, you could also directly work this out using you know integrating out this function. So,
you take some test function, integrate minus infinity to plus infinity. Well, I mean in this case
I have restricted it to be you know time going from 0 to you know time being positive and so

on. But, in general you can have a step function which is also negative, right.

So, you can define maybe instead of t perhaps it is more you know standard to call the
variable x in such a scenario, but the point is that you can have a you know delta function
which is isolated at any point and you would have to have the step which is also you know
corresponding to that point and you take the derivative of it. So, if you do a derivative like
this with some test function f of t, so, you get you know you can show that this is the same as

f of t naught, right.



So, to see this you have to just employ integration by parts and also require that the test
function, of course, vanishes outside some finite interval. But, in any case it is intuitive that
you know if you have a step function and if you take a derivative you know there is mess
which is isolated at that one point and that mess is in fact, the same as the Dirac delta
function which one can show you know with more sophisticated arguments, but that is what it

1S.

Let us look at some more properties, right. So, it is kind of a weird object, but you know we
have to learn to work with it. So, if you take the delta function and multiply it by x right it
turns out that it will just go to 0, right. So, you have a mess sitting at the origin and then you
multiply it by you know x which is which goes to 0. So, where is the guarantee that if you
multiply infinity by 0 why should it go to 0, right.

So, you know the argument for this is to take a test function and multiply and see what
happens and integrate. So, we introduce this test function phi of x you know multiply x times
delta of x times phi of x integrate from minus infinity to plus infinity, then we see that you
can think of this as you know you can pull out this delta function to the right side and say that

ok we are looking at you know the function x times phi of x.

So, what does this integral do? Right, we know that the job of this delta function is to just
pick out the value of this function at x equal to 0, but the value of the function at x equal to 0

is just 0 because you have x sitting here. So, indeed x times delta of x is nothing but 0, right.

So, one way to show identities involving generalized functions is you know what does the
generalized function do? You have some you know some stuff on the left-hand side on, some

other stuff on the right-hand side if we have to establish their equality.

Then we must show that for any test function you know an arbitrary test function if you
multiply with it and integrate from minus infinity to infinity, the value obtained by each of
the terms one on the left-hand side on the other on the right-hand side must be the same. So,
which in this case is true, right. So, it is the same as if you had multiplied with 0 and integrate

it. So, therefore, x times delta x is equal to 0.

You could also try to prove this you know using your explicit construction of your delta

function. You start with the Gaussian whose width keeps on shrinking and you know you



multiply by x, evaluate this integral and then take the limit of this integral and then also you

will see that this is indeed 0.
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x8'(x) = -0(x)
Again let us consider a test function ¢(r) multiply and integrate:

o 0
f dx[xd' ()] (9 = f dx[xg()d'(x) = -4(0).
00 00
Thus, we see that this is consistent with:
x8'(x) = -6(x).
We could have obtained this result by taking a derivative of the previous result:

x6()=0
=18 () +80)=0
=x6'(x) = -4(x)

26" = 26(0)

To show this, we can take a derivative of the previous result:

But, when you multiply delta prime of x with x it turns out that you will get a minus delta of
x, right. How do we see this again? Take a test function, multiply and integrate. So, if we do
this x times delta prime of x times phi of x which then we write it as x times phi of x delta
prime of x, but we have seen that delta prime of x will you know extract for you the value of

the derivative of this function at x equal to 0.

But, what is the derivative of this function at x equal to 0? right. So, you have on the one
hand you know with a minus sign minus phi of x and you also have x times phi prime of x,
but x times phi prime of x will just go to 0 because x is there right. So, you are left with only

minus phi of 0, right.

So, this we say you see that this is consistent with the claim that x times delta prime of x is
equal to minus delta of x, right. Once again this also could have been worked out using some
you know like sequence of functions which are all converging to the delta function and then

you take the derivative you know there are other ways of seeing this.

But this is a standard way is to take a test function integrate and check that you know both

left-hand side and right-hand side, yield the same answer regardless of what the test function



is right subject to certain you know conditions we generally assume for the test function like

it dies off to 0 for at plus infinity and minus infinity.

We could have obtained this result by taking a derivative of the previous result also right. So,
we could have directly got this. So, we have x times delta of x is equal to 0, right. So,
therefore, x times if you take a derivative you have x delta prime of x plus the derivative of x
is just one times delta x equal to 0. Therefore, x delta prime of x is equal to minus delta of x.

So, this is another way of seeing the same result.

Then we have you know we are looking at a bunch of results. It is useful to get practice with
you know working with these kinds of identities, x square double derivative of X it turns out
to just 2 times delta of x, right. I mean I guess one can make a guess. You know that you
know if you take x and multiply with the first derivative, it is going to have some kind of a

delta function with it.

But likewise, if you take x squared and multiply by del delta double prime of x you are going
to get again some kind of a delta. You have to work out the constants involved, right.
Likewise, you can play, you can come up with your own functions, you can take the next
order derivative, multiply by x cube and so on and check for yourself that you know if there

1s a delta function which comes and so on.
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x6'(x) = -8(x)
=x8"(0)+8(x)= -0 (%)
=x6"(x)=-20'()
=x6"0=-2x5(n)
=226"(x)=260)

0(=x) = 8(x)
To see this, we introduce some test function ¢(x) and multiply and integrate:

[ " dx (-] 00 = f dxd) 61 =90)

(x) = 8(-»)

showing that the Delta function is even.




So, if you take a derivative of the previous result. So, you have x times delta prime of x is
equal to minus delta of x taking derivatives on both sides we see x times delta double prime
of x plus delta prime of x is minus delta prime of x. So, this delta prime of x and this minus
delta prime of x if you couple them together you get a minus 2 delta prime of x on the

right-hand side.

So, you have x delta double prime of x is minus 2 delta prime of x. So, x squared delta double
prime of x is minus 2x delta prime of x, but we have already seen that x times delta prime of
x 1s the same as delta of x with a minus sign. So, therefore, we get the result that x squared

delta double prime of x is 2 delta x. You can continue like this.

You can take one more derivative and so on or you can also work it out from you know first
principles which means you multiply by some test function and integrate throughout and see
whether it holds. Also, I guess it is obvious that this function is delta of x is even, but it is
also something that we can check with the help of a test function, you multiply delta of a

minus X times phi of x.

And, then you make a change of variable. You send x to minus x. So, limits of integration go
from plus infinity to minus infinity, then you get a minus dx then delta of x times phi of
minus x. So, you have this minus sign which cancels with this you know the order of integral

limits being changed.

So, if I change them back, then this minus sign goes away and then this is a standard integral
involving a delta function and phi of minus x. So, I just get phi of 0 as the answer. So, delta

of x is the same as delta of minus x showing that the delta function is even.
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§-2)=-6'()

‘This result directly follows from the taking a derivative of the previous result:
a(x) = 6(-x)

=6'(x)=-0(-x)

=0(-1=-0%

showing that the derivative of the Delta function is odd.

1

dax)=
|a]

8), a# 0.

To see this, we introduce some test function ¢(x) and multiply and integrate:

And, it turns out that the first derivative of the delta function is an odd function. So, delta
prime of minus x is minus delta prime of x. So, once again you can either show it by first
principles or we can use the previous result. So, we have delta of x is delta of minus x. So,
delta prime of x, if you take derivatives on both sides so, you have minus delta prime of

minus X in other words delta prime of minus x is minus delta of x, right.

So, the first derivative of the delta function is odd. You can also think of these kinds of
problems as you know you know you start with a sequence of functions which will approach
the delta function in the limit, take their derivatives and check that indeed that will also give

you know this type of property.

And, now we come to a very important property which is that if you take the delta function of
some constant times X, this it is the same as one over modulus of that constant times delta of
x as long as the constant is not 0. If the constraint is 0, then I mean it is not really a function

at all. We just have delta of 0 right and then we know that it blows up at that point.

So, eh when a is nonzero, if you are scaling your variable then your delta function itself also

gets scaled by a factor which is one over modulus of a, alright.
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&ax) = Lé(Jc), a#0.
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To see this, we introduce some test function ¢(x) and multiply and integrate:
o0
dx[d(ax)] ¢(x)
-0
Next we make the substitution ax = y. Depending on the sign of a the limits of integration either remain from -cs, oo or change signs to become

0, —c0. Therefore if a is positive we have:
I [ (0)
= [Caxond )= 22,
a J-o a

a

On the other hand this result becomes negative if a is negative. It immediately follows that:

fax) = L,J(x).
l4]
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How do we see this? Get a test function and multiply and integrate. So, we have minus
infinity to plus infinity dx delta of ax times phi of x. Now, we make a substitution ax is equal
to y depending on the sign of a the limits of integration may remain minus infinity to plus

infinity or they may change to infinity to minus infinity.

Now, therefore, if a is positive, then we will just get 1 over a in minus infinity to plus infinity
dx delta by phi of y by a and then we have to just put in y equal to 0 ah. So, which will give
us you know 1 1 over a times it should be phi of phi of phi of a phi of 0.

So, it is so, it is phi of 0 by a and here we would get it would be the negative of this if you put
if a were negative right because you will get minus 1 over a, if you want to keep the same

limits and then you will get the negative value if a were negative.

Therefore, a compact way of saying this is delta of ax should be equal to 1 over the modulus
of a delta of x, correct. So, this is a very important result and in fact, the next result is very

closely related to this result, right.
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0[(x-a)(x-b) = [6(x-a)+6(x-b)], a# b.

|a=b]

Clearly whenever xis neither a nor b the function is zero, and when at each of the points a and b, we would expect a delta function. The only thing
to be found out is the factor with which the function needs to be multiplied at each of these values. We observe that in the vicinity of x = a, the

factor (x - b) becomes (a - b), and invoking the previous result, the factor outside the delta function should be ‘]_b‘ A similar logic holds at the
™

point x = b too, but this time, it is (x - a) that yields the same factor.

In fact the above logic extends to 2 much more complicated function. It is only at the zeros of the function that delta function yields a delta
function, and the factor involved comes from the slope of the function at that point, The result is:

g
|

W)=Y (J’j;:)‘)l if flxp)=0md f/(x) 0.
1
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So, if you have some function which is sitting in here; so, in this case I am considering a
quadratic function. So, if you think of this logically, right. So, you have delta of a function
and basically this is going to be 0 for all values of you know x which are not you know roots
of the function sitting in here because when the value of the function is 0, we know that there

is going to be mess we have to find out what; that means, is.

But, and when does that happen that happens when x equal a or x equal to b, right. So, it is
you know reasonable for us to expect that this function is the same as some constant ¢ 1 times
delta of x minus a plus some other constant ¢ 2 times delta of x minus b and then we have to
invoke some properties to work out that constant it turns out that that constant is actually

nothing, but 1 over mod of a minus b right.

How do we argue for this? So, let us think of this as you know suppose you are very close to
the point a, you are in the vicinity of a. So, you see that the mess is coming only from you
know this term; whereas, the other one is going to take the value a minus b. You are very
close to a, so, for all practical purposes this is just the constant in that vicinity and whose

value is a minus b.

And, we have just seen that you know when you have a constant multiplying a delta function
at that point that constant will just come out with the modulus sign. So, you have one over
mod of a minus b. And, likewise when you are at b the second part you know x minus b is the

one which is, you know, where the mess is and then the other one is the factor b minus a.



So, you just pull out that factor and you know it comes in the denominator as we have seen
and, but you also have to take the modulus, right. So, it is basically the same argument as the
previous problem, but you have to be careful now. In fact, there are two points at which this

delta function exists.

So, if you have a quadratic function in there you know in general there are two roots and each
of these roots are going to give you a delta function sitting there and you can evaluate what
the coefficients are. And, using the argument which I have just given and that follows from

the previous problem. So, go over this argument carefully and understand it well.

And, once we have understood this well in fact, this extends to some arbitrary function you
do not have to look at just you know a function of this kind - a quadratic function, but an
arbitrary function with lots of roots. So, as long as you know the slope at the root is not 0, this

is valid right.

If the slope at that point is 0, then you know you cannot, you know it is going to be a mess it
is not you cannot just divide by 0, so, that will not work out. But, if you have a function
whose roots are such that f prime of x i is nonzero, then you will get this is the result that

holds delta of f of x is summation over 1 delta of x minus x 1, right.

So, it is clear that whenever you are at any of these Os you are going to get a delta function.
So, you have a sum of all these delta functions and then the coefficients they have to be
worked out. And, the coefficients are in the vicinity of this function of this 0, the function is
going to be like f of x is equal to delta you know x minus x 1 times you know f prime of x i

right.

So, this is something like a Taylor expansion of your function at that point and then you have
to. I mean then we invoke the result from the previous you know this result. So, you get a

modulus 1 over modulus of f prime of x i at that point, right. So, this is a general result.

And, you know these kinds of properties are useful and you know they appear in many
contexts some applications we will see and in the applications particularly applied to
differential equations, right. So, there is a technique called you know you know the green

function approach which we will discuss.



But the point is that a facility or a familiarity with all these properties of delta functions is of
great importance and they appear in all kinds of context electrodynamics for example, you

know other fields also have these kinds of delta functions you know.

Whenever you are modeling any kind of impulse behavior delta functions appear. So, these
properties must be well understood and you know with practice we will know how to work

with them right. That is all for this lecture.

Thank you.



