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Linear Algebra
Lecture - 07
Cauchy-Schwartz inequality for vectors from LVS

So, in the previous lecture, we saw how we could derive Cauchy-Schwartz inequality when
we are looking at vectors in three-dimension right. So, there it turned out to be a result which
was not a surprise right. So, but we came up with a method right, we outlined a geometric
approach which something similar can be used to generalize you know the Cauchy-Schwartz
inequality, we can get a generalized version of the Cauchy-Schwartz inequality for you know

vectors drawn from a linear vector space.

At the moment, a scalar product is defined, the Cauchy-Schwartz inequality will come into
play and you know the way to obtain it is analogous to the method that we use to get to the
Cauchy-Schwartz inequality with three-dimensional vectors. So, that is the subject of this

lecture ok.
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So, we consider some vector z which is a linear combination of two vectors X, y right. So, as
always like in the previous you know lecture, we saw we took two vectors a and b. So,
likewise we are taking you know two vectors x and y so, generic vectors right. So, there will
be some special cases you know where x is related to y in a certain way or if it is another

vector, these are all special cases which you can think about you know separately.

But let us say that these two are you know generic vectors x and y and we take the special
linear combination x and y right I mean in general, we could have put some arbitrary
coefficient here, but we already have this you know wisdom from hindsight or we have used
it. And then, we saw there that there was some nice result that could be extracted by

considering you know this a dot b.

So, we will consider the inner product of y, x will already put in an inner product y, x I mean
there was a geometrical interpretation which we gave for why we went about considering this
particular vector. So, you know to get to an inequality, we are going to use you know the one

inequality which is sort of encoded in the definition of inner product right.

So, that is where any other you know interesting inequality is going to come from the fact
that you know every inner product of every vector with itself must be greater than or equal to
0 that is what we are going to use. But we are going to first of all try to get a you know some
nice linear combination of two vectors which is like here and then invoke the property that

we care about ok.



(Refer Slide Time: 04:01)

(e = ()~ 2 o) () + 2 [ ) P o) -
() P o) =20 o o) + () 20,

or

F-de— ot (x|x)

1
Db ) 2ol !

for every real a. Equivalently

This is possible only if it is always true that
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Rearranging, we have the Cauchy-Schwartz inequality:
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So, let us restrict alpha to be some real number. So, if we take the inner product of z with
itself, what do we get? Ok. So, if you take the inner product of z with itself, you have this
inner product of x with itself minus 2 times alpha times y, x times X, y right why does this
happen? Right, so, you have to work through this carefully right, this comes from the fact that

alpha is real right.

So, if I do inner product of z with itself so, when I take the bra vector z, alpha is going to
remain alpha there is no alpha star because it is a real number and then, but y, x will become
X, y right you have to carefully work out this algebra and then, you will see that you have x, x

minus 2 alphay, x, X, y.

So, you are going to get x, y here and the other one will come from you know you get y, x
times X, y and X, y times y, X does not matter. So, you can combine couple both of them, you
will get minus 2 times alpha times y, x times X, y and then, you have the final term which is
plus alpha squared mod of x, y the whole square times y, y right all of this you will have to

convince yourself by working through this right, you have to do the algebra.

Not very difficult, but already there is an application of the properties of the inner product
that are already used here. Now, comes the you know the property that of non-negativity of a

scalar product of a vector with itself. So, if you just apply this so, we have this you know this



entire quantity must be greater than or equal to 0 and then, we write it in terms of as a

quadratic expression in alpha square right.

So, now we recall that alpha is some arbitrary number for any value of alpha, any real alpha
this condition must hold right. So, we will write this as a quadratic expression in alpha. So,
you have alpha squared minus 2 alpha times some coefficient plus some other coefficient

must be greater than or equal to 0 right. So now, we will complete the squares.

So, you have alpha minus 1 over y, y the whole squared and then since we have got an extra 1
over y, y squared, we are going to subtract that and then, you have minus 1 over y, y squared

here plus this other constant must be greater than or equal to 0.

Now, this must hold for any real value of alpha, for any real value of alpha, this quantity here
right y, y is a real number, alpha is a real number the difference of two real numbers is the
real number, the square of a real number is going to be real and positive alright. The sum of a
positive number with another quantity which must be greater than or equal to 0, for any value
of alpha. So, this can happen only if this quantity itself is greater than or equal to O right. So

therefore, it forces this quantity must be greater than or equal to 0.

Now, if we rearrange these terms, we have the Cauchy-Schwartz inequality which is the
statement that the inner product of any two vectors X, y, the modulus squared of the inner
product of any two vectors must be less than or equal to the product of the inner products of
each of these vectors with themselves right, inner product of x with x and inner product of y

with y the product.

This product is going to be greater than or equal to the modulus squared of the inner product
of these two vectors right. This is a Cauchy-Schwartz inequality which has very beautiful
applications in many fields of mathematics right and it appears in you know when you are

studying complex numbers, it appears in all kinds of contexts.
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Examples

+ ® Let us consider the set of complex numbers. We have seen that they form a vector space, with the operation of addition being the usual addition of
complex numbers. We have also seen that we can define the scalar product (zl \12) =21 2. What happens if we apply the Cauchy-Schwartz
inequality to this case? We get

2
l2*n sa*un'n,
which is clearly true. In fact, it s the equality that holds here for all pairs of vectors!
« Consider the vector space of complex n -column vectors.

We have seen how the scalar product between two vectors ‘x) and \y) is legitimately defined as (x]y) = X'y The Cauchy-Schwartz inequality now
yields
|XFr s (xfx)(Y'y).

If we write the column vectors like

X N

x »

X=|. Y=|.
" 1

Xn In

the result, written out explicitly reads:
S5 = (2 16 ) (Zet i)

-
 We have already seen the familiar example of three dimensional Euclidean vectors, where the result reads simply as: >
of |
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So, let us look at a few examples where you know drawn from within you know the theory of
vector spaces. So, we have seen that we can think of the set of complex numbers as a vector

space right. So, with the operation of addition being the usual addition of complex numbers.

So, we also defined a scalar product z 1 and z 2 which is just going to be z 1 star z 2 it is a
legitimate scalar product. So, if we simply impose this Cauchy-Schwartz inequality to this
scalar product right, so, it is important to realize that the Cauchy-Schwartz inequalities is very
general and it will hold for any definition of a scalar product as long as it is a legitimate
definition of a scalar product you must have all these properties corresponding to the scalar

product satisfied and then, it should work out.

So, look at what happens here. So, for this case it turns out that this inequality becomes like a
trivial equality right. So, why does this happen? So, you have z 1 star z 2 the whole squared
mod of this squared is must be less than or equal to z 1 star times z 1 times z 2 star times z 2,

but the right-hand side and the left-hand side are the same for any two vectors z 1 and z 2.

So, it is never going to be a hard inequality, it is always going to be an equality right. So, it
reduces to an equality in this particular case. Now, but there are other cases where it is

actually quite a you know it is a strong result. For example, if you have n complex numbers



which form you know we saw that n-column vectors form a linear vector space right,

consider any two such vectors.

We also said that you know there is a legitimate inner product which one can define as X
dagger Y, you take the rho vector corresponding to x multiply with the column vector
corresponding to y, you know you are multiplying all these complex coefficients x. And then,
the Cauchy-Schwartz inequality now says mod of X dagger Y the whole squared is less than
or equal to X dagger X times Y dagger Y right.

So, explicitly if you want to see this, let us say you have a, you know you have two column
vectors like x and y you know x 1, x 2, x and all the way up to x n, they are all complex
coefficients right. So, and y 1, y 2, y n all of them are also complex numbers, arbitrary
complex numbers. So, what this result says is, it does not matter - you just have some n
arbitrary complex numbers here and another n arbitrary complex numbers you tie them up in

this particular manner, this inequality necessarily holds right.

So, x, y x 1y i you add them up, take the square of them and so, this must be necessarily less
than or equal to summation of i over i mod of x 1 squared the whole thing times summation
over ] mod of y j squared right, so this product. This inequality can be derived directly by
other methods, but the beauty is that we have this very general result and it finds application

in all these particular cases.

And then of course, we have seen one example which is the familiar result of Euclidean
vectors, where the result simply reads as a dot b the whole squared is less than or equal to a
dot a times b dot b right. So, there | mean we saw that this was simply a consequence of the
fact that cos squared of theta is always less than or equal to 1 right. So, it does not seem like a
big deal, but the point is that this has the power of application in a much more general

context.

And in fact, one can combine these ideas right cos square of theta is less than or equal to 1
implies the or is seen to be equivalent to the Cauchy-Schwartz inequality and so, you can use
this as a way to define a cos theta between any two vectors in a you know in an abstract

vector space right. So, maybe we will look at that in another example, but the point is that so,



there is this analogy which one can make right. I will just make that as a statement, but

maybe we will go into it elsewhere and so, that is all for this lecture.

Thank you.



