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                                                          Hahn Banach Theorems. 

There are several theorems which go under this name. Basically the same thing and there are

essentially two kinds of Hahn-Banach theorems. First one is called the analytic version, which

deals  with the extension of continuous linear  functional  defined on a subspace to the whole

space. The second one known as the geometry question deals with how you can separate convex

sets in the vector space by means of hyperplanes. 

Analytic Version. We are going to first prove a fairly general result and then we will deduce the

extension theorem as a consequence. 

Theorem.  Let  V  be a vector space over  R (now I am specifically saying that this is a vector

space  over  R)  and  let  P :V ↦R be  such  that  P ( x+ y ) ≤P (x )+P ( y ) ,∀ x , y∈V  and

P (αx )=αP ( x ) ,∀ α>0 , x∈V . Let  W  be a subspace of  V  and  let  g :W ↦R be linear such that

g ( x )≤ p (x ) ,∀ x∈V . Then there exists a linear extension, f :V ↦R such that f (x )≤P ( x ) ,∀ x∈V .

So, what do we mean by linear extension? This means,  f  is linear and f  restricted to  W  is the

same as g. We are going to prove this using Zorn's lemma. 
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Proof. Let

P={(Y , h ) :Y is a subspaceof V ,Y ⊃W ,his a linear extensionof gwith h (x )≤ P ( x ) for all x∈Y } .  P

is non empty because you already have (W ,g )∈P W. 

Now we are going to define a partial order on P.  Ee say (Y 1 ,h1 )≤ (Y 2 ,h2) if Y 1 is contained Y 2

and  h2  is  linear  extension  of  h1.  This  defines  a  partial  order  on  the  space.  We now take

Q={(Y i , hi ) :i∈ I } to  be  a  chain.  What  is  a  chain?  A  chain  means  any  two  elements  are

comparable i.e.,  if  (Y 1 ,h1) and  (Y 2 ,h2) are in  Q  then either  Y 1  is contained inY 2 or  Y 2  is

contained  in  Y 1  and  corresponding  maps  are  linear  extensions.  So,  any  two  maps  are

comparable. Then you define Y=∪i∈ I Y i. This is again a subspace because Qis a chain, hence,

given any two elements  x , y∈Y ,  they belong in some  Y i  and  Y j . But, then one of them is

bigger than the other. So, both will belong to say Y i or both to Y j . So, x+ y will again be there.

Same happens with the scalar multiplication. So, this is a subspace. Now you define  h :Y ↦R

such that h ( x )=h i(x) if x∈Y i .  Again this is well defined because if x∈Y i∩Y j, then one of this

will be bigger one, because they are comparable. Let Y i⊆Y j .  Therefore, hi (x )=h j (x). So, this is

well defined. Because of the fact that you are dealing with a chain, clearly h  is a linear extension

of g. Therefore, (Y ,h )∈P. 

So, every chain has an upper bound; because (Y i , hi )≤ (Y ,h ) ,∀ i∈ I . Therefore, every chain has

an upper bound, and therefore, by Zorn's lemma there exists a maximal element (Z , f )∈P. So,



what is the maximal element? There is no other element which is bigger than this according to

this order relation. Thus, we have (Z , f ) is a maximal element in P,  Z contains W   and f   is a

linear extension of g So these are all the properties. 
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So, to complete the proof we need to show or it is enough for us to show that Z=V . Assume the

contrary. So, there exists  x0∈V∖Z. Now we will define  Y={x+ t x0 : x∈ Z ,t ∈R . So,  Y   is a

subspace which of course contains W ,because if we put t=0 , it will contain W .  and of course it

strictly contains Z .  

Now, I am going to define a mapping h ( x+t x0 )=f ( x )+αt, α   to be determined. How do I want to

determine α ? α   to be to be determined such that (Y ,h )∈P. Then we will have a contradiction

because we have contradicted the maximality of (Z , f ). 

So, we want to see if we can do this. So, Y   already contains W  and h  is also linear. So, we only

want to show that h ( x )≤ P(x ). So, we want to choose α   such that f (x )+αt ≤P (x+ t x0) .

Now, if t>0 , divide through by t , so, you have f ( xt )+α ≤ P( xt +x0) . This is true for all xxand for

all t>0. So, this implies that for all x∈ Z , you have f (x )+α ≤P (x+ x0). Now, if t<0 , you divide

by −t  and then do the same kind of calculation to get f (x )−α≤P ( x−x0 ). 
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Thus, we have to find α   such that

¿
x∈ Z

[ f ( x )−P ( x−x0 ) ]≤α≤ inf
x∈ Z

[ f (x )+P ( x+ x0 )].

Up to now, we have used only one property of P, namely, positive scalars can go in and out of P

Now want to use the other property which is like the triangle inequality kind of thing. 

So, we take any x , y∈Z , then you have

f (x )+ f ( y )≤ f (x+ y )≤P ( x+ y )≤ P (x+ x0 )+P ( y−x0 ) .

This implies f ( y )−P ( y−x0 )≤P ( x+x0 )−f (x ) ,∀ x , y∈ Z .

Therefore, the sup of left hand side is always less than the inf of the right hand side. Therefore

we can always find an αsuch that this is true and this completes the proof. 

Theorem (Hahn-Banach). Let  V  be a norm linear  space over  R and  W  be a subspace,  and

g :W ↦R be a continuous linear function. Then there exists f :V ↦R continuous linear functional

such that  f  restricted  to  W  is  g (i.e.,  it  is  an extension) and as  a  bonus we also  have  that

||f||V ¿=||g||W ¿. 

So,  we  can  preserve  the  norm of  the  linear  functional.  So,  not  only  the  functional  can  be

extended, we can also do it without the norm going out of control. 

Proof. We are going to define P ( x )=||g||W ¿||x||. Then obviously from the properties of the norm,

P ( x+ y ) ≤P (x )+P( y) and P (αx )=αP ( x ) for α  positive. We also have the g ( x )≤ P(x ) (that is true

because, in fact, |g ( x )|≤||g||W ¿||x||=P (x )¿ . Therefore, there exists a linear functional f :V ↦R (by



the previous theorem) such that f  restricted to W  equal to g, and of course, f (x )≤||g||W ¿||x||. This

implies that f  f is continuous and you have that f ∈V ¿ and f (x )≤||g||W ¿||x|| for all x∈V . So you

put  −x in  place  of  x.  So  it  is  true  for  minus  −f ( x )also.  So  it  is  true  for

|f ( x )|i . e . ,∨ f (x )∨≤||g||W ¿||x||. Therefore, you have that  ||f||V ¿≤||g||W ¿ . But  f (x )=g (x ) ,∀ x∈W ,

therefore, we have that ||g||W ¿≤||f||V ¿ (because you are going to a bigger space, you are going to

take  the  supremum of  ¿ f (x )∨¿ over  a  bigger  set  and consequently  you will  have  a  bigger

supremum). So this proves the Hahn-Banach theorem completely. 
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Now, we want to prove the extension theorem also for a complex vector space. Before we do

that, we want to look at the anatomy of a continuous linear functional on a complex vector space.

Proposition. Let V  be a normed-linear space over C, f :V ↦C be a continuous linear functional.

Then you write f=g+ih, where g, h are the real and imaginary parts of f  i.e., f (x )=g (x )+ ih (x ) .

Then f (x )=g (x )−ig (ix ) ,∀ x∈V  and ||f||V ¿=||g||V ¿.

So, the real part is the major thing and that is why we can extend the previous theorem. 

Proof. For x∈V ,  f (ix )=if (x ).  So,  we  get  g ( ix )+ih ( ix )=ig ( x )−h ( x ).  Therefore,  you  have

h ( x )=−g (ix )and therefore we are through. So, this proves the first part namely,  f (x )  can be

written entirely in terms of the real part because of the complex linearity. 



Now, one can write  |f ( x )|=e−iθ f (x )=f (e−iθ x )=g (e−iθ x )+ ih (e−iθ x ) . But, if you look at the left

hand side you have  |f ( x )|, which is real. So, automatically  h has to be 0 and therefore, you have

|f ( x )|≤||g||V ¿∨|x|∨¿ and  therefore  you  have  ||f||≤||g||V ¿.  Now,  on  the  other  hand,

|f ( x )|
2
=|g ( x )|

2
+|h ( x )|

2
. Therefore,  |g ( x )|≤|f ( x )|≤||f||V ¿∨|x|∨¿ and  therefore,  ||g||V ¿≤||f||V ¿ .

Therefore, you have that ||f||V ¿=||g||V ¿. 

So, now, we go on to theorem Hahn-Banach again V  norm linear space over C . 

Theorem (Hahn-Banach). Let V  be a normed-linear space over C and W  be a subspace of V . Let

g :W ↦C  g be a continuous linear functional. Then there exists a continuous linear functional

f :V ↦C with ||f||=||g||. 
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Proof. We will write g ( x )=h ( x )−ih (ix ); h=¿ real part of g, which is a a real linear functional.

Then you know that ||g||=||h||. So, then by the real Hahn Banach theorem, there exists  ~h :V ↦R

such that ~h restricted to W  equals h and ||~h||=¿|h|∨¿. These are all considering V as a real vector

space.  And now I am going to define f (x )=
~
h (x )−i

~
h(ix ). Then ||f||=||~h||=||h||=||g||.  Thus, it is

enough to show that f  is linear. Vector addition certainly goes through i.e., f (x+ y )= f (x )+ f ( y ) .

Now, for any real scalar α , f (αx )=αf (x ) is also clear because ~h is a real linear functionals. So,

we only have to deal with the complex case and by linearity it is enough to check for  i. So,

f (ix )=
~
h (ix )−i

~
h (−x )=i ¿ Therefore, f  is complex linear as well and the theorem is proved.
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So, in all cases whether it is complex or real vector space, if you have norm linear space and a

continuous linear functional on a subspace the Hahn-Banach theorem says we can always extend

it continuously to the whole space and you can preserve the norm. 

Corollary. Let V  be a normed-linear space and x0∈V , x0≠0. Then there exists f ∈V ¿ such that

||f||=1 and f (x0 )=||x0||≠0. 

So, this says that the dual space is very rich there are lots of continuous functional. For every

x∈V  which is non-zero I can produce a special continuous linear functional which has norm 1

and whose value is a certain specific number. So, we can specify whatever we want here and

therefore, this really you can construct lots of linear functionals using this particular thing. 

Proof.  You  take  W  which  is  a  one  dimensional  space  spanned  by  x0 and  then  you  define

g (α x0)=α∨|x0|∨¿. In particular,  g ( x0)=||x0||. Then you can extend  g. So, there exists  f ∈V ¿

such that f  restricted to W  is equal to g and therefore, f (x0 )=g (x0 )=¿|x0|∨¿ and ||f||=¿|g|∨¿. 

But then, what is ¿|g|∨¿? ||g||=1 because |g (α x0 )|=|α|||x0||. So, on the one dimension space W ,

g ( z )=¿|z|∨¿ for any any z∈W  and that means ||g||=1. So, ||f||=1.  and that proves this. 

Remark. If x , y∈V  and x ≠ y, there exists f ∈V ¿ with ||f||=1 such that f (x )≠ f ( y ) . All you have

to do is to look at x− y (≠ 0). And therefore, you can find an f  with ||f||=1,  f (x− y )=||x− y||≠0.



So, we say that  V ¿separates points of V . That means, given two distinct points, you can find a

continuous  linear  functional  which  takes  different  values  at  these  two  points  so  such  that

property is called separation of points. 
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Corollary. Let V  be a normed linear space, x∈V . Then

||x||=¿ f ∈V ¿ ,||f||≤1¿ f ( x )∨¿= max
f ∈V ¿ ,||f||≤1

¿ f (x )∨¿¿¿ 

Proof. If ||f||≤1, then |f ( x )|≤||x||.  So ¿
f ∈V ¿ ,||f||≤1

¿ f ( x )∨¿≤||x||. ¿

On the other hand, we already found there exists f ∈V ¿and ||f||=1 and f (x )=||x||. Therefore, you

have that the supremum is in fact equal to the norm. Now, this is the starting point of a very

interesting concept which we will see next.


