Functional Analysis Professor S. Kesavan Department of Mathematics Institute of Mathematics Science Lecture 2.2 Exercises (Continued)

(Refer Slide Time: 00:16)

Exercise 6. Now we define $T: C[0,1] \mapsto C[0,1]$ as $T(f)(t) = \int_{[0,t]} f(s) ds$ (we are taking the indefinite integral of a continuous function). It is always continuous. So, T definitely maps C[0,1] into C[0,1] and this is a linear map. So, we want to show the T is continuous and also show that

$$\begin{aligned} \|T^n\| &= \frac{1}{n!}. \\ \underline{Solution}: \ |T(f)(t)| \leq \int_{[0,t]} |f(s)| ds \leq ||f||_{\infty} t \leq ||f||_{\infty} \cdot So, \ ||T(f)||_{\infty} \leq ||f||_{\infty}. \text{ Now, if you took } f = 1 \text{ then you get } T(f)(t) = t \text{ and then you see that } ||T(f)||_{\infty} = 1 \text{ and therefore you have equality and this implies that } ||T|| = 1. \text{ Now } T^2(f)(t) = \int_{[0,t]} T(f)(s) ds. \text{ Thus, } i T^2(f)(t) \leq \int_{[0,t]} |T(f)(s)| ds \leq ||f||_{\infty} \int_{[0,t]} s ds = \frac{t^2}{2} ||f||_{\infty} ds. \end{aligned}$$

. Then $||T^2|| \le \frac{1}{2}$. Again you take f=1, then T(f) is nothing but t and $T^2(f)(t) = \frac{t^2}{2}$ and therefore

you get in fact that $||T^2|| = \frac{1}{2}$. Now complete by induction and that will finish. (Refer Slide Time: 04:09)

 $\|A_{ax}\|_{\underline{f}} = \sum_{i=1}^{2} |A_{ax}|_{\underline{f}} | \leq \sum_{i=1}^{2} \sum_{j=1}^{2} |a_{ij}|_{a_{j}} | |a_{j}|$ $= \sum_{i=1}^{2} \sum_{j=1}^{2} |a_{ij}|_{a_{j}} | |a_{j}|$ $\frac{||Aa^{1}|_{1} \leq \max \sum |a_{11}|_{1}}{\frac{||a_{2}||_{1}}{||a_{2}||_{1}}} \leq \max \sum |a_{11}|_{1}} = 1$ $\max \operatorname{accord} at d_{0} \quad a = C, \quad ||z_{11}|_{1} = 1$ $\operatorname{Aac} = Ae_{0} = \begin{bmatrix} a_{10} \\ \vdots \end{bmatrix} \quad ||A_{21}|_{1} = \sum |a_{11}|_{0}$ 11A11=max 2 12;1

Exercise 7. Let $A = (a_{ij})$ be $N \times N$ matrix. Then A defines a linear transformation on \mathbb{R}^N and in finite dimensions all linear transformations are continuous. Let us, take it as $A: l_N^1 \mapsto l_N^1$ (recall l_N^1 is \mathbb{R}^N with $\mathcal{L} \vee \mathcal{N} \mid_1$. So, compute ||A||.

<u>Solution</u>. Recall that $||A|| = {}^{i} x \neq 0 \frac{||Ax||_{1}}{||x||_{1}}$. So, let us compute first $||Ax||_{i} = \sum_{j=1,2,...,N} a_{ij}x_{j}$ which implies $i(Ax)_{i} \leq \sum_{j=1,2,...,N} |a_{ij}| |x_{j}|$. So, $||Ax||_{1} = \sum_{i=1,2,...,N} i(Ax) \lor i_{i} \leq \sum_{i=1,2,...,N} \sum_{j=1,2,...,N} ia_{ij} \lor ix_{j} \lor ic_{i} \lor ix_{j} \lor ic_{i}$. Let me interchange the order of summation (everything is finite non-negative no problem). So, $||Ax||_{1} \leq \sum_{i=1,2,...,N} \sum_{j=1,2,...,N} ia_{ij} \lor ix_{j} \lor i = \sum_{j=1,2,...,N} ia_{ij} \lor ix_{j} \lor i \leq \max_{j=1,2,...,N} (\sum_{i=1,2,...,N} ia_{ij} \lor i) \sum_{j=1,2,...,N} ix_{j} \lor i = \max_{j=1,2,...,N} ia_{ij} \lor i \land j \lor i = \max_{j=1,2,...,N} (\sum_{i=1,2,...,N} ia_{ij} \lor i) \land i \in i^{-1}$. Consequently you get that $\frac{||Ax||_{1}}{||x||_{1}} \leq \max_{j=1,2,...,N} (\sum_{i=1,2,...,N} ia_{ij} \lor i) \land i$ (these are the column sums of the absolute values of the entries). Thus, $||A|| \leq \max_{j=1,2,...,N} (\sum_{i=1,2,...,N} ia_{ij} \lor i) \land i$ Now, I want to show in fact, this is equal. Assume that maximum occurs at some j_{0} then you consider $x = e_{j_{0}}$, the vector with 1 in j_{0} place and 0 elsewhere. Then, $||x||_{1} = 1$ and what is Ax? $Ax = A e_{j_{0}} = [a_{1,j_{0}}, a_{2,j_{0}}, \dots a_{N,j_{0}}]$ (the j_{0} column of A). Therefore, $i||Ax||_{1} = \sum_{i=1,2,...,N} ia_{i,j_{N} \lor i}$ and therefore we have $||A|| \le \max_{j=1,2,\dots,N} (\sum_{i=1,2,\dots,N} i a_{ij} \lor i) i$ and it is actually attained for the vector e_{j_0} and therefore we have $||A|| = \max_{j=1,2,\dots,N} (\sum_{i=1,2,\dots,N} i a_{ij} \lor i) i$.

So, in the same way I would like you to try, if A maps from l_{∞} to l_{∞} . Then show then show that $||A|| = \max_{i=1,2,..,N} (\sum_{j=1,2,..,N} i a_{ij} \lor i) i$ (this time you take the row sums of the absolute values of the entries of the matrix and then take the maximum).

(Refer Slide Time: 10:07)

A: los -> los show that IAII = max 2 lail (Mn = all nxn metrices. We can identify this with R? and use its norm topology. GL = Druetible matrices Stow that Gh is gen in Mr. det: ma -siR Gin = SAlderA to 3 = (lat) R 403

Exercise 8. Let $M_n = i$ all $n \times n$ matrices. So, we can identify this with R^{n^2} square and use its topology. Since all norm topologies are equivalent does not matter what you are going to use. So, I am going to identify an element in M_n as a big vector which I string out the rows (or all the columns) and I get n^2 dimensional vector. Let $GL_n = i$ invertible matrices. Show that GL_n is open in M_n . (This almost immediate. There is nothing to do. You take the function determinant $det: M_n \mapsto R$. Then this is a continuous function because determinant is nothing but a polynomial variables therefore it is in all the and а continuous function and then $GL_n = [A: det A \neq 0] = (det)^{-1} (R \setminus [0])$ is the inverse image of the open set $R \setminus [0]$ with respect to the determinant map). So, inverse image of an open set is open under continuous map and therefore GL_n has to be open and we will do a little more complicated version of this. For that I need to do another exercise.

(Refer Slide Time: 12:24)

Exercise 9. Let V be Banach and L(V) = i all bounded linear or continuous linear transformations V to V. So L(V) is also a Banach space. Let $A_k \in L(V), k = 1, 2, 3, ..., \infty$. We want to give a meaning to $S = \sum_{k=1,2,...,\infty} A_k$. What do you mean by an infinite series? You take $S_l = \sum_{k=1,2,...,l} A_k$. So (S_l) is a sequence of partial sums. So, if (S_l) is a convergent sequence in L(V) we say that the series converges and the limit of (S_l) is the sum of the series. The exercise is, assumed $\sum_{k=1,2,...,\infty} i |A_k| \lor i < \infty i$ then $\sum_{k=1,2,...,\infty} A_k$ is convergent.

<u>Solution</u>. Let us take $S_l = \sum_{k=1,2,...,l} A_k, S_m = \sum_{k=1,2,...,m} A_k$. Let us assume m > l. So, $S_m - S_l = \sum_{k=l,...,m} A_k$ and therefore, $||S_m - S_l|| \le \sum_{k=l,...,m} i \lor A_k \lor i$. But $\sum_{k=1,2,...,\infty} i \lor A_k \lor i$. is a convergent series. So, by the Cauchy criterion of convergent series, $\sum_{k=l,...,m} i \lor A_k \lor i$ can be made less than ϵ for all m, llarge enough and consequently (S_l) is Cauchy. Now, V is Banach implies L(V) is also Banach and therefore, (S_l) converges to S and that is called the sum of the convergent series. (Refer Slide Time: 16:22)

Assume Z IIA II 2405 Jan ZAKins Cgt. $S_{R} = \sum_{k=1}^{P} A_{k} \qquad S_{m} = \sum_{k=1}^{m} A_{k}$ $m \neq S_{m} - S_{R} = \sum_{k=1}^{m} A_{k} \qquad ||S_{m} - S_{R}|| \leq \sum_{k=1}^{m} |A_{k}||$ =){E? Counchy V Banch =) Z(V) Banch SL-JS (1) Let V be Barrach 11411<1 AG2(V). Then fi is invertible and (I-A) = I+ SA K=1 $\widehat{\gamma_{ij}}_{\mathcal{L}} \in \mathcal{J}(\mathcal{W} \quad \overline{\gamma_{\mathcal{L}}}_{\mathcal{L}} = \overline{\gamma_{i}}(\overline{\gamma_{2}}_{\mathcal{L}}) \quad \|\widehat{\gamma_{ij}}_{\mathcal{L}} \in \|\overline{\gamma_{i}}_{\mathcal{L}}\| \leq \|\overline{\gamma_{i}}_{\mathcal{L}}\|_{\mathcal{L}} \\ \leq \|\overline{\gamma_{i}}\|_{\mathcal{L}} \|\|\mathbf{e}\|^{\ell}$ $\|T_{T_{z}}\| \leq \|T_{1}\| \|T_{z}\|$ $\|A^{k}\| \leq \|A\|^{k} \qquad \sum \|A^{k}\| \leq \sum \|A\|^{k} <+\infty$ $= \sum A^{k} \text{ is } a^{+}_{1}$ $(\underline{\Gamma}+A+\cdots+A^{n})(\underline{\Gamma}-A) = \underline{\Gamma}-A^{n} = (\underline{\Gamma}-A)(\underline{\Gamma}+A+\cdots+A^{n})$ 5(T-A)= I= (I-A)S : (I-A) = S= I+ ZAK.

Exercise 10. Let V be Banach and let ||A|| < 1 for some $A \in L(V)$. Then I - A is invertible and $(I - A)^{-1} = I + \sum_{k=1,2,...,\infty} A^k$. So, this is like if |x| < 1 then $(1 - x)^{-1} = I + \sum_{k=1,2,...,\infty} x^k$. So, this is the infinite dimensional operator version of that.

<u>Solution.</u> $T_1, T_2 \in L(V)$ then you can compose them, so, $T_1 T_2(x) = T_1(T_2(x))$. Therefore, $||T_1 T_2(x)|| \le ||T_1|| ||T_2|| \le ||T_1|| ||T_2||$. So, $||A^k|| \le ||A||^k$.

Therefore, $\left\|\sum_{k=1,2,\dots,\infty} A^k\right\| \le \sum_{k=1,2,\dots,\infty} \|A\|^k < \infty$. $\sum_{k=1,2,\dots,\infty} A^k$ is convergent by the previous exercise. So, now you look at

$$(I+A+...+A^{n})(I-A)=I-A^{n+1}=(I-A)(I+A+...+A^{n})$$

So, if you $n \to \infty$, you get S(I-A) = I = (I-A)S. Therefore, (I-A) is invertible and the inverse is

given by *S* which is a limit of this partial sums, which is $I + \sum_{k=1,2,...,\infty} A^k$.

(Refer Slide Time: 20:33)

Exercise 11. Let V be Banach and G = i invertible linear transformations in L(V). Show that G is open.

Solution. This is the infinite dimensional version of the matrix problem which we saw earlier. Now we want to show that *G* is open and we do not have the notion of a determinant here.

So let us take $A \in G$ and you take B such that $||B|| < \frac{1}{||A^{-1}||}$. Then let us look at

 $A - B = A(I - A^{-1}B)$

Now, what about $i \lor A^{-1}B \lor i$? $||A^{-1}B|| \le \lor i A^{-1} \lor i \lor B \lor i < 1$. Thus, $I - A^{-1}B$ is invertible and A is also given to be invertible and therefore A - B is invertible. So this implies that

$$B\left(A;\frac{1}{\|A^{-1}\|}\right) = \left\{B:\|B-A\|<\frac{1}{\|A^{-1}\|}\right\} \subseteq G.$$

This implies that G is open.

(Refer Slide Time: 23:18)

Exacrcise 12. The last exercise which I want to discuss with you is the dual of a product space. Let us take *V*, *W*, *two*norm linear spaces. Then we consider the Cartesian product *V* × *W* and I am going to put two norms on this. Let $||x, y||_1 := ||x||_V + ||y||_W$ or $||x, y||_{\infty} = max \{||x_V||, ||y||_W\}$. Then both these define norms on the *V* × *W*.

Show that $(V \times W, \|.\|_1)^{\flat} = (V^{\flat} \times W^{\flat}, \|.\|_{\infty}).$

<u>Solution</u>. Let us take $(f,g) \in V^i \times W^i$ and define $\phi(x,y) = f(x) + g(y), (x,y) \in V \times W$.

This is a linear functional and $|\phi(x, y)| = ||f||_{V^{1}} ||x||_{V} + ||g||_{W^{1}} ||y||_{W} \le max\{||f||_{V^{1}}, ||g||_{W^{1}}\}(||x||_{V} + ||y||_{W}).$ Therefore, $||\phi|| \le max\{||f||_{V^{1}}, ||g||_{W^{1}}\}.$

Now, let $\phi \in (V \times W)^{i}$. Define $f(x) = \phi(x, 0) \wedge g(y) = \phi(0, y)$. So (x, y) = (x, 0) + (0, y). Therefore, $\phi(x, y) = f(x) + g(y)$ (by linearity) and $|f(x)| \leq ||\phi|| ||x||_{v}$ and $|g(x)| \leq ||\phi|| ||y||_{w}$. This means $f \in V^{i}$ and $g \in W^{i}$. Therefore, $(f, g) \in V^{i} \times W^{i}$ and $||(f, g)||_{\infty} \leq \vee |\phi| \vee i$. Previously we showed $||\phi|| \leq ||(f, g)||_{\infty}$. Thus, $||\phi|| = ||(f, g)||_{\infty}$. So, $(V \times W, ||.||_{1})^{i} = (V^{i} \times W^{i}, ||.||_{\infty})$.

Exercise. Show that $(V \times W, \|.\|_{\infty})^{\iota} = (V^{\iota} \times W^{\iota}, \|.\|_{1})$. one can try to do this yourself. So, I think we will wind up with this.