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Exercise 6. Now we define T :C [0,1 ]↦C [0,1 ] as T ( f ) ( t )=∫
[0 , t ]

f (s )ds (we are taking the indefinite

integral of a continuous function). It is always continuous. So,  T  definitely maps  C [0,1] into

C [0,1] and this is a linear map. So, we want to show theT  is continuous and also show that

||T n||= 1
n!

. 

Solution: |T ( f ) ( t )|≤ ∫
[0 , t ]

|f (s )|ds≤||f||∞ t ≤||f||∞ . So,  ||T ( f )||∞≤||f||∞ . Now, if you took f=1 then you

get T ( f ) ( t )=t and then you see that ||T ( f )||∞=1 and therefore you have equality and this implies

that ||T||=1. Now T
2 ( f ) (t )=∫

[0, t ]

T ( f ) (s )ds. Thus, ¿T
2

( f ) (t )∨≤∫
[0 ,t ]

|T ( f ) (s )|ds≤||f||∞ ∫
[0, t ]

sds= t2

2
||f||∞



. Then ||T 2||≤ 1
2
.  Again you take f=1, then T ( f ) is nothing but t and T 2 ( f ) (t )=

t2

2
 and therefore

you get in fact that ||T 2||=1
2

.  Now complete by induction and that will finish. 
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Exercise 7. Let A=(aij) be N ×N  matrix. Then A defines a linear transformation on RN  and in

finite dimensions all linear transformations are continuous. Let us, take it as A :lN
1 ↦ lN

1  ( recall lN
1

is RN   with ¿∨.∨|1. So, compute ||A||. 

Solution.  Recall that ||A||=¿x ≠0
||Ax||1
||x||1

.  So, let us compute first 

(Ax ) i= ∑
j=1,2 ,… N

aij x jwhich implies  ¿ (Ax ) i∨≤ ∑
j=1,2 ,… N

|a ij||x j|.

So,  ||Ax||1= ∑
i=1,2 ,…N

¿(Ax)∨¿i≤ ∑
i=1,2 ,…N

∑
j=1,2 ,…N

¿aij∨¿ x j∨¿¿¿.  Let me interchange the order of

summation (everything is finite non-negative no problem). So, 

||Ax||1≤ ∑
i=1,2,…N

∑
j=1,2 ,…N

¿a ij∨¿ x j∨¿= ∑
j=1,2 ,…N

∑
i=1,2 ,…N

¿aij∨¿ x j∨¿≤ max
j=1,2…,N

( ∑
i=1,2 ,…N

¿aij∨¿) ∑
j=1,2 ,… N

¿ x j∨¿= max
j=1,2…, N

( ∑
i=1,2 ,…N

¿aij∨¿)||x||1 ¿¿¿¿¿

Consequently you get that  
||Ax||1
||x||1

≤ max
j=1,2…,N

( ∑
i=1,2,…N

¿ aij∨¿)¿ (these are the column sums of the

absolute values of the entries). Thus, ||A||≤ max
j=1,2…,N

( ∑
i=1,2,…N

¿ aij∨¿) .¿

Now, I want to show in fact, this is equal. Assume that maximum occurs at some j0 then you

consider  x=e j 0
,the vector with 1 in  j0 place and 0 elsewhere. Then,  ||x||1=1 and what is  Ax?

Ax=A e j0
=[a1 j0 ,a2 j0 ,…aN j0

] (the  j0 column  of  A).  Therefore,  ¿|Ax||1= ∑
i=1,2…. N

¿ai j0∨¿
¿ and



therefore we have ||A||≤ max
j=1,2…,N

( ∑
i=1,2,…N

¿ aij∨¿)¿ and it is actually attained for the vector e j0 and

therefore we have ||A||= max
j=1,2…,N

( ∑
i=1,2 ,… N

¿aij∨¿)¿. 

So, in the same way I would like you to try, if A maps from l∞ to l∞. Then show then show that

||A||= max
i=1,2…, N

( ∑
j=1,2 ,… N

¿aij∨¿)¿ (this time you take the row sums of the absolute values of the

entries of the matrix and then take the maximum). 
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Exercise 8. Let  M n=¿ all  n×n matrices. So, we can identify this with  Rn2 square and use its

topology. Since all norm topologies are equivalent does not matter what you are going to use. So,

I am going to identify an element in M n as a big vector which I string out the rows (or all the

columns) and I get n2 dimensional vector. Let GLn=¿ invertible matrices. Show that GLn is open

in  M n.  (This  almost  immediate.  There  is  nothing to  do.  You take  the  function  determinant

det :M n↦R. Then this is a continuous function because determinant is nothing but a polynomial

in  all  the  variables  and  therefore  it  is  a  continuous  function  and  then

GLn= {A :det A ≠0 }=(det )−1 (R∖ {0 } )¿this the inverse image of the open set R∖ {0 } with respect

to the determinant map). So, inverse image of an open set is open under continuous map and

therefore GLn has to be open and we will do a little more complicated version of this. For that I

need to do another exercise.
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Exercise  9.  Let  V  be  Banach  and  L (V )=¿ all  bounded  linear  or  continuous  linear

transformations V  to V . So L(V ) is also a Banach space. Let Ak∈ L (V ) , k=1,2,3….∞. We want

to  give  a  meaning  to  S= ∑
k=1,2 ,…∞

Ak.  What  do  you  mean  by  an  infinite  series?  You  take

Sl= ∑
k=1,2 ,… l

A k . So (Sl) is a sequence of partial sums. So, if(Sl) is a convergent sequence in L(V )

we say that the series converges and the limit of (Sl)  is the sum of the series. 

The exercise is, assumed ∑
k=1,2,…∞

¿|Ak|∨¿<∞¿ then ∑
k=1,2,…∞

A kis convergent. 



Solution. Let us take  Sl= ∑
k=1,2 ,…l

A k , Sm= ∑
k=1,2 ,…m

Ak. Let us assume m> l. So,  Sm−Sl= ∑
k=l ,… ,m

Ak

and therefore,  ||Sm−S l||≤ ∑
k=l ,…,m

¿∨Ak∨¿. But ∑
k=1,2,… ,∞

¿∨Ak∨¿.  is a convergent series. So, by

the Cauchy criterion of convergent series,  ∑
k=l ,…,m

¿∨A k∨¿ can be made less than ϵ  for all  m, l

large enough and consequently (Sl) is Cauchy. Now, V  is Banach implies L(V ) is also Banach

and therefore, (Sl) converges to S  and that is called the sum of the convergent series. 
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Exercise 10. Let V  be Banach and let ||A||<1 for some A∈ L (V ) . Then I−A  is invertible and

( I−A )
−1

=I+ ∑
k=1,2,… ,∞

A k
.  So,  this  is  like if  |x|<1 then  (1−x )

−1
=I+ ∑

k=1,2 ,… ,∞

xk
.  So,  this  is  the

infinite dimensional operator version of that. 

Solution. T 1 , T 2∈ L(V ) then  you  can  compose  them,  so,  T 1T 2 (x )=T 1(T 2 ( x )).  Therefore,

||T 1T 2 (x )||≤||T 1||||T 2 (x )||≤||T 1||||T 2||||x||. Therefore,  ||T 1T 2||≤||T 1||||T 2||. So,  ||Ak||≤||A||
k.

Therefore,  || ∑
k=1,2 ,… ,∞

Ak

||≤ ∑
k=1,2 ,… ,∞

||A||
k
<∞. ∑

k=1,2,… ,∞

A k
 is convergent by the previous exercise.

So, now you look at

 ( I+A+…+An ) ( I−A )=I−An+1
=( I−A )( I+A+…+ An) 

So, if you n→∞, you get S ( I−A )=I=( I−A ) S . Therefore, ( I−A )is invertible and the inverse is

given by S which is a limit of this partial sums, which is I+ ∑
k=1,2,…,∞

A k
. 
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Exercise 11. Let V  be Banach and G=¿ invertible linear transformations in L(V ). Show that G

is open. 

Solution. This is the infinite dimensional version of the matrix problem which we saw earlier.

Now we want to show that G is open and we do not have the notion of a determinant here. 

So let us take A∈G and you take B such that ||B||<
1

||A−1||
. Then let us look at 



A−B=A ( I−A−1B)

Now, what about ¿∨A−1B∨¿?  ||A−1B||≤∨¿ A−1
∨¿∨B∨¿<1. Thus, I−A−1B is invertible and

A is also given to be invertible and therefore A−B is invertible. So this implies that

B(A ; 1

||A−1||)={B :||B−A||< 1

||A−1||}⊆G.

 This implies that G is open. 
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Exaercise 12. The last exercise which I want to discuss with you is the dual of a product space.

Let us take V ,W , twonorm linear spaces. Then we consider the Cartesian product V ×W and I am

going to put two norms on this. Let  ||x , y||1:=||x||V+||y||W  or  ||x , y||∞=max {||xV||,||y||W }.  Then

both these define norms on the V ×W . 

Show that (V ×W ,||.||1 )
¿
=(V ¿×W ¿ ,||.||∞). 

Solution. Let us take ( f , g )∈V ¿×W ¿ and define ϕ ( x , y )=f ( x )+g ( y ) , ( x , y )∈V ×W . 

This is a linear functional and |ϕ ( x , y )|=||f||V ¿||x||V+||g||W ¿||y||W ≤max {||f||V ¿ ,||g||W ¿ }(||x||V +||y||W ) .

Therefore, ||ϕ||≤max {||f||V ¿ ,||g||W ¿ }. 
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Now, let  ϕ∈ (V ×W )
¿. Define  f (x )=ϕ (x ,0 )∧g ( y )=ϕ (0 , y ) . So  ( x , y )=(x ,0 )+(0 , y ). Therefore,

ϕ ( x , y )=f ( x )+g ( y ) (by linearity) and  |f ( x )|≤||ϕ||||x||V  and  |g ( x )|≤||ϕ||||y||W . This means  f ∈V ¿

and  g∈W ¿.  Therefore,  ( f , g )∈V ¿×W ¿ and  ||( f , g )||∞≤∨|ϕ|∨¿.  Previously  we  showed

||ϕ||≤||( f , g )||∞. Thus, ||ϕ||=||( f , g )||∞.

So, (V ×W ,||.||1 )
¿
=(V ¿×W ¿ ,||.||∞). 

Exercise. Show that (V ×W ,||.||∞ )
¿
=(V ¿×W ¿ ,||.||1).

 one can try to do this yourself. So, I think we will wind up with this.




