Functional Analysis Professor S. Kesavan Department of Mathematics Institute of Mathematics Science Lecture 2.2 Exercises (Continued)

(Refer Slide Time: 00:16)

Exercise 6. Now we define $T: C[0,1] \rightarrow C[0,1]$ as $T(f)|t) = \int_{[0,t]} f(s) ds$ (we are taking the indefinite integral of a continuous function). It is always continuous. So, *T* definitely maps *C*[0,1] into *C*[0,1] and this is a linear map. So, we want to show the*T* is continuous and also show that

$$
||T^n|| = \frac{1}{n!}.
$$

\nSolution: $|T(f)(t)| \le \int_{[0,t]} |f(s)| ds \le ||f||_{\infty} t \le ||f||_{\infty}.$ So, $||T(f)||_{\infty} \le ||f||_{\infty}$. Now, if you took $f = 1$ then you get $T(f)(t) = t$ and then you see that $||T(f)||_{\infty} = 1$ and therefore you have equality and this implies that $||T|| = 1$. Now $T^2(f)(t) = \int_{[0,t]} T(f)(s) ds$. Thus, $\int_{[0,t]} T^2(f)(t) \le \int_{[0,t]} |T(f)(s)| ds \le ||f||_{\infty} \int_{[0,t]} s ds = \frac{t^2}{2} ||f||_{\infty}$.

. Then $||T^2|| \leq \frac{1}{2}$ ¹/₂. Again you take $f=1$, then $T(f)$ is nothing but t and $T^2(f)(t) = \frac{t^2}{2}$ 2 and therefore

you get in fact that $||T^2|| = \frac{1}{2}$ 2 . Now complete by induction and that will finish. (Refer Slide Time: 04:09)

(7) lat $4 = (a_{ij})$ axa mateix
 $A: \ell_{\Delta} \rightarrow \ell_{\Delta}^n$
 $A: \ell_{\Delta}^n \rightarrow \ell_{\Delta}^n$
 $A \rightarrow \ell_{\Delta}$ $\begin{aligned} \left|\left\{A\mathbf{x}\right\}_{\mathbf{y}} & = \sum_{i=1}^{n} \left\{\mathbf{A}\mathbf{e}_{i}\right\}_{i} \right| & \leq \sum_{i=1}^{n} \sum_{i=1}^{n} \left|\mathbf{a}_{i}\mathbf{e}_{i}\right| \left\{\mathbf{e}_{i}\right\}_{i} \\ & = \sum_{i=1}^{n} \sum_{i=1}^{n} \mathbf{b}_{i}\mathbf{e}_{i}\left|\left\{\mathbf{e}_{i}\right\}_{i} \\ & = \sum_{i=1}^{n} \sum_{i=1}^{n} \mathbf{b}_{i}\mathbf{e}_{i}\left|\left\{\math$ $\leq \max_{\substack{1 \leq i \leq n \\ \text{if } i \leq n}} \sum_{i=1}^n \frac{|\mathbf{a}_{ij}^i|}{|\mathbf{a}_{ij}^i|} \cdot \sum_{i=1}^n \frac{|\mathbf{a}_{ij}^i|}{|\mathbf{a}_{ij}^i|}$ $\frac{114a^{11}}{11211}$ \leq max ≥ 1 aij)
 $\frac{1254x^{12}-1}{x^2}$

max ocens at $\frac{1}{10}$ $x = C$ $\frac{1}{10}$ $\frac{1}{10}$ $\frac{1}{2}$
 $\frac{1}{2}$
 $\frac{1}{2}$
 $\frac{1}{2}$
 $\frac{1}{2}$
 $\frac{1}{2}$

Exercise 7. Let $A = (a_{ij})$ be $N \times N$ matrix. Then A defines a linear transformation on R^N and in finite dimensions all linear transformations are continuous. Let us, take it as $A: l_N^1 \mapsto l_N^1$ (recall l_N^1 is R^N with $\delta \vee \vee \downharpoonright_1$. So, compute $||A||$.

 $Solution.$ Recall that $||A|| = \lambda^2 \times 10^4 \frac{||Ax||_1}{||x||_1}$ $||x||_1$ *.* So, let us compute first $(Ax)_{i} = \sum_{j=1,2,...,N} a_{ij}x_{j}$ which implies $\frac{\dot{c}(Ax)}{x^{j}} \leq \sum_{j=1,2,...,N} |a_{ij}||x_{j}|$. $\int_{S_0} \|Ax\|_1 = \sum_{i=1,2,...N} \dot{c}(Ax) \vee \dot{c}_i \le \sum_{i=1,2,...N} \sum_{j=1,2,...N} \dot{c} a_{ij} \vee \dot{c} \times \dot{c} \vee \dot{c} \cdot \dot{c}$. Let me interchange the order of summation (everything is finite non-negative no problem). So, $||Ax||_1 \le \sum_{i=1,2,...N} \sum_{j=1,2,...N} \lambda a_{ij} \vee \lambda x_j \vee \lambda = \sum_{j=1,2,...N} \sum_{i=1,2,...N} \lambda a_{ij} \vee \lambda x_j \vee \lambda \le \max_{j=1,2,...N} \left(\sum_{i=1,2,...N} \lambda a_{ij} \vee \lambda \right) \sum_{j=1,2,...N} \lambda x_j \vee \lambda = \max_{j=1,2,...N} \left(\sum_{i=1,2,...N} \lambda a_{ij} \vee \lambda \right)$ Consequently you get that $\frac{||Ax||_1}{||Ax||_2}$ $||x||_1$ ≤ *max* $\left(\sum_{j=1,2...,N} \right)$ $\langle \lambda a_{ij} \rangle \langle \lambda \rangle$ (these are the column sums of the absolute values of the entries). Thus, $||A|| \leq \max_{j=1,2...N} \left(\sum_{i=1,2,...N} \lambda_i a_{ij} \vee \lambda \right) \cdot \lambda_i$ Now, I want to show in fact, this is equal. Assume that maximum occurs at some j_0 then you consider $x = e_{j_0}$, the vector with 1 in j_0 place and 0 elsewhere. Then, $||x||_1 = 1$ and what is Ax ? $Ax = Ae_{j_0} = [a_{1j_0}, a_{2j_0}, ... a_{Nj_0}]$ (the j_0 column of A). Therefore, $\frac{\lambda}{|Ax|} = \sum_{i=1,2,...,N} \lambda a_{i,j_0 \vee \lambda}$ and

therefore we have $||A|| \leq \max_{j=1,2,...,N} (\sum_{i=1,2,...,N} \lambda a_{ij} \vee \lambda) \lambda$ and it is actually attained for the vector e_{j_0} and therefore we have $||A|| = \max_{j=1,2...,N} (\sum_{i=1,2,...,N} \dot{a} a_{ij} \vee \dot{b}) \dot{b}$.

So, in the same way I would like you to try, if *A* maps from l_{∞} to l_{∞} . Then show then show that $||A|| = \max_{i=1,2, ..., N} \left(\sum_{j=1,2, ..., N} \dot{a} a_{ij} \vee \dot{b} \right) \dot{c}$ (this time you take the row sums of the absolute values of the entries of the matrix and then take the maximum).

(Refer Slide Time: 10:07)

 $A: \begin{bmatrix} 0 \\ A_1 \end{bmatrix} \rightarrow \begin{bmatrix} 0 \\ A_2 \end{bmatrix}$. Somethod Italian max $\begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix}$ 3 M = all nun motion. We can intentify this with R²² and use its norm topology. Colo = Orvertible matrices Store that City is great in Mr. $det: m_{n} \rightarrow \mathbb{R}$ $GrL_{n} = \{A \mid detA \neq 0\}$ $=(41)^{7}$ \mathbb{R} $\sqrt{6}$

Exercise 8. Let $M_n = \lambda$ all $n \times n$ matrices. So, we can identify this with R^{n^2} square and use its topology. Since all norm topologies are equivalent does not matter what you are going to use. So, I am going to identify an element in M_n as a big vector which I string out the rows (or all the columns) and I get n^2 dimensional vector. Let $GL_n = \lambda$ invertible matrices. Show that GL_n is open in M_n . (This almost immediate. There is nothing to do. You take the function determinant $det: M_n \rightarrow R$. Then this is a continuous function because determinant is nothing but a polynomial in all the variables and therefore it is a continuous function and then $GL_n = [A: \text{det } A \neq 0] = (\text{det })^{-1} [R \setminus [0]| \text{ this the inverse image of the open set } R \setminus [0] \text{ with respect } \frac{1}{2}$ to the determinant map). So, inverse image of an open set is open under continuous map and therefore *G Lⁿ* has to be open and we will do a little more complicated version of this. For that I need to do another exercise.

(Refer Slide Time: 12:24)

Exercise 9. Let *V* be Banach and $L(V) = \lambda$ all bounded linear or continuous linear transformations *V* to *V*. So $L(V)$ is also a Banach space. Let $A_k \in L(V)$, $k=1,2,3...$ ∞ . We want to give a meaning to $S = \sum_{k=1,2,...} A_k$. What do you mean by an infinite series? You take $S_l = \sum_{k=1,2,...l} A_k$. So (S_l) is a sequence of partial sums. So, if(*S_{<i>l*}) is a convergent sequence in $L(V)$ we say that the series converges and the limit of (S_l) is the sum of the series. The exercise is, assumed $\sum_{k=1,2,..., \infty} \frac{\lambda}{\lambda_k} |A_k| \vee \lambda \infty \lambda$ then $\sum_{k=1,2,..., \infty} A_{k}$ convergent.

<u>Solution.</u> Let us take $S_i = \sum_{k=1,2,...,l} A_k$, $S_m = \sum_{k=1,2,...,m} A_k$. Let us assume $m > l$. So, $S_m - S_l = \sum_{k=l,...,m} A_k$ and therefore, $||S_m - S_l|| \leq \sum_{k=1,\dots,m} \dot{\omega} \vee A_k \vee \dot{\omega}$. But $\sum_{k=1,2,\dots,\infty} \dot{\omega} \vee A_k \vee \dot{\omega}$ is a convergent series. So, by the Cauchy criterion of convergent series, $\sum_{k=1,...,m} \dot{\omega} \vee A_k \vee \dot{\omega}$ can be made less than ϵ for all *m*, *l* large enough and consequently (*S^l*) is Cauchy. Now, *V* is Banach implies *L*(*V*) is also Banach and therefore, (S_i) converges to *S* and that is called the sum of the convergent series.

(Refer Slide Time: $16:22$)
Assume ΣM_k ¹ \leftarrow $\overline{\Sigma}A_{k,n}$ $\overline{\Sigma}A_{k,n}$ $\overline{\Sigma}A_{k,n}$ $\overline{\Sigma}A_{k,n}$ $S_R = \sum_{k=1}^{R} A_k$ $S_m = \sum_{k=1}^{R} A_k$
 $m \times S_m - S_R = \sum_{k=1}^{M} A_k$ $N \leq r \leq 11 \leq r \leq 11 \leq r \leq 11$ =) { } Counchy V Bounch = 2(V & My 17) $S_L \rightarrow S$

(b) Let V the Bamach $||A|| \leq 1$ Atest (v). Then f_i is investible

and $(1-A)^T \rightarrow \Gamma + \sum_{k=1}^{\infty} f_i^k$ 4777 ₂ 11 < 171117 ₂ 11
 114^k 11 < 1141^k $\sum 14^{k}16 \leq$ 141^k < $\sum 14^{k}16 \leq$ 141k $(\pm + + + \cdot + 4)^{n}(\pm - +) = \pm - 4^{n+1} = (\pm - 4)(\pm + 4 - \cdot + 4)^{n}$ $S(T-A) = T = (T-A)S$ $\therefore \boxed{\underline{\neg} - A}^T = S = \underline{\neg} + \underline{\Sigma} A^k.$

Exercise 10. Let *V* be Banach and let $||A|| < 1$ for some $A \in L(V)$. Then $I - A$ is invertible and $(I-A)^{-1} = I + \sum_{k=1,2,..., \infty}$ *A*^k. So, this is like if $|x| < 1$ then $(1-x)^{-1} = I + \sum_{k=1,2,..., \infty}$ *x k* . So, this is the infinite dimensional operator version of that.

Solution. $T_1, T_2 \in L(V)$ then you can compose them, so, $T_1 T_2(x) = T_1(T_2(x))$. Therefore, $||T_1T_2(x)|| \le ||T_1|| ||T_2(x)|| \le ||T_1|| ||T_2|| ||x||.$ Therefore, $||T_1T_2|| \le ||T_1|| ||T_2||.$ So, $||A^k|| \le ||A||^k.$

Therefore, $\left\| \sum_{k=1,2,\ldots,\infty} \right\|$ *A k* || *[≤]* ∑ *k*=1,2 *,…,∞* $||A||^k < \infty$. $\sum_{k=1,2,...,\infty}$ A^k is convergent by the previous exercise. So, now you look at

$$
(I + A + ... + An)(I - A) = I - An+1 = (I - A)(I + A + ... + An)
$$

So, if you $n \rightarrow \infty$, you get $S(I-A)=I=[I-A]S$. Therefore, $(I-A)$ is invertible and the inverse is

given by *S* which is a limit of this partial sums, which is $I + \sum_{k=1,2,..., \infty}$ *A k* .

(Refer Slide Time: 20:33)

Exercise 11. Let *V* be Banach and $G = \lambda$ invertible linear transformations in $L(V)$. Show that *G* is open.

Solution. This is the infinite dimensional version of the matrix problem which we saw earlier. Now we want to show that *G* is open and we do not have the notion of a determinant here.

So let us take *A* ∈ *G* and you take *B* such that $||B|| < \frac{1}{||A||}$ $||A^{-1}||$ *.* Then let us look at *A*−*B*=*A*(*I*−*A*⁻¹*B*)

Now, what about $\partial_i \vee A^{-1}B \vee \partial_j$? $||A^{-1}B|| \leq \partial_i \partial_j A^{-1} \vee \partial_i \vee B \vee \partial_j A^{-1}$. Thus, $I - A^{-1}B$ is invertible and *A* is also given to be invertible and therefore *A*−*B* is invertible. So this implies that

$$
B\left(A; \frac{1}{\|A^{-1}\|}\right) = \left(B\cdot\|B-A\| < \frac{1}{\|A^{-1}\|}\right) \subseteq G.
$$

This implies that G is open.

(Refer Slide Time: 23:18)

Exaercise 12. The last exercise which I want to discuss with you is the dual of a product space. Let us take *V*, *W*, *twonorm linear spaces. Then we consider the Cartesian product* $V \times W$ *and I am* going to put two norms on this. Let $||x, y||_1 := ||x||_V + ||y||_W$ or $||x, y||_{\infty} = max(||x|_V||, ||y||_W)$. Then both these define norms on the $V \times W$. Show that $(V \times W, ||.||_1)^{\lambda} = (V^{\lambda} \times W^{\lambda}, ||.||_{\infty}).$

<u>Solution.</u> Let us take $(f,g){\in}V^{\iota}\times W^{\iota}$ and define $\phi(x,y){=}f(x){+}g(y),(x,y){\in}V\times W$.

This is a linear functional and $|\phi(x, y)| = ||f||_{V^{\perp}} ||x||_{V^{\perp}} ||g||_{W^{\perp}} ||y||_{W} \le max{||f||_{V^{\perp}}}, ||g||_{W^{\perp}} |||x||_{V^{\perp}} ||y||_{W}).$ $\text{Therefore, } ||\phi|| \leq \max\{||f||_{V^{\iota}}, ||g||_{W^{\iota}}\}.$

(Refer Slide Time: 27:17)

Now, let $\phi \in (V \times W)^{\delta}$. Define $f(x) = \phi(x,0) \wedge g(y) = \phi(0,y)$. So $(x,y) = (x,0) + (0, y)$. Therefore, $\phi(x,y)=f(x)+g(y)$ (by linearity) and $|f(x)| \le ||\phi|| ||x||_V$ and $|g(x)| \le ||\phi|| ||y||_W$. This means $f \in V^{\delta}$ and $g \in W^{\iota}$. Therefore, $(f, g) \in V^{\iota} \times W^{\iota}$ and $\|(f, g)\|_{\infty} \leq \vee |\phi| \vee \iota$. Previously we showed $||\phi|| \leq ||(f, g)||_{\infty}$. Thus, $||\phi|| = ||(f, g)||_{\infty}$. $\text{So, } (V \times W, ||.||_1)^{i} = (V^{i} \times W^{i}, ||.||_{\infty}).$

Exercise. Show that $(V \times W, ||.||_{\infty})^{\lambda} = (V^{\lambda} \times W^{\lambda}, ||.||_1)$. one can try to do this yourself. So, I think we will wind up with this.