Functional Analysis Professor S. Kesavan Department of Mathematics The Institute of Mathematical Sciences

Lecture No. 72 Exercises - Part 2

(Refer Slide Time: 00:16)

≤(C+I) Ilw,-w211, Sqn 3 wif hold & aquicant on K Ascole => J unif agt. melore (*) given EXO JN St. HR, LZN $\frac{\partial u \rho}{\partial t e^{2} v} \left| \frac{\| \rho_{n_{E}} - \bar{\tau}_{2} \| - \| \rho_{n_{E}} - \bar{\tau}_{2} \|}{\partial t e^{-1} v} \right| < \mathcal{E}.$ is Harry IIPATE -Tal - IIPATE -TAD / <E L fixed 2N l-200 11 Prita-Tall SE. + reBr. =) NPTITISE YRAN T = lim PT.

Problem 8: (a) So, we studied some conditions under which, when Hilbert spaces were involved, a compact operator can be approximated by a finite rank operator. So, here is another situation where that is possible. Let W be Banach. Assume that exists $\{P_n\}$ a sequence in L(W), each of finite rank and such that $P_n y \rightarrow y$ for all $y \in W$. Let V be Banach, and $T \in L(V, W)$ be compact. Show that T is the limit of finite rank operators.

Solution: So, if you took the obvious one, so $P_n \circ T: V \to W$ has finite rank. And for every $x \in V$, we have $P_n(Tx) \to Tx$ by hypothesis. And therefore, so sufficient to show $||P_n - T|| \to 0$ at least for a subsequence. We may not be able to show for the whole thing, but it is enough, we all we want is T is a limit to operator of a finite rank. So, if we can show this at least for a finite rank. So, by Banach-Steinhaus, $||P_n||$ is uniformly bounded because it converges for each point. So, point wise bounded means uniformly bounded. So, $||P_n|| \leq C$. And then T compact. So, $K = \overline{T(B_V)}$ is compact, where B_V is closed unit ball in V. And if you have $w \in K$, then $||w|| \leq ||T||$. Because w is the limit of $T(B_V)$, so Tx, x in B_V , so $||Tx|| \leq ||T|| ||x||$ which is less than ||T||. And in the closure, the same inequality will hold. So, you have that $||w|| \leq ||T||$. So, define $\phi_n(w) = ||P_nw - w||$ for w in K. So, ϕ_n is a continuous function and $|\phi_n(w)| \leq (||P_n|| + ||I||)||w||$ which is (C + 1)||w|| and this is less than or equal to

 $(C + 1)||T||. \text{ Therefore, } \Phi_n\text{'s are uniformly bounded. So, our aim is to use Ascoli's theorem. So, we will now look at <math>|\Phi_n(w_1) - \Phi_n(w_2)|$ and that is equal to $||P_nw_1 - w_1|| - ||P_nw_2 - w_2|||$, $|||x|| - ||y||| \le ||x - y||.$ So, $||P_nw_1 - w_1|| - ||P_nw_2 - w_2||| \le ||P_n(w_1 - w_2) - w_1 - w_2|| \le (C + 1)||w_1 - w_2||.$ So, $\{\Phi_n\}$ is uniformly bounded and equicontinuous on the compact metric space, so this is a compact metric space. And therefore, Ascoli theorem implies that there exists a uniformly convergent subsequence. So, given ϵ positive, there exists a N such that, for all $k, l \ge N$, we have $\left| ||P_{n_k}Tx - Tx|| - ||P_{n_0}Tx - Tx|| \right| < \epsilon$. So, I am just saying that it is uniformly Cauchy and so in particular, we have this. That is for every $x \in B_V$, you have $\left| ||P_{n_k}Tx - Tx|| - ||P_{n_0}Tx - Tx|| \right| < \epsilon$. Now, you keep k fixed greater than or equal to N and you let l tend to ∞ . So, $||P_{n_k}Tx - Tx|| \to 0$. So, $||P_{n_k}Tx - Tx|| < \epsilon$ and this is true for all $x \in B_V$. So, this implies that $||P_{n_k}T - T|| < \epsilon$ for all $k \ge N$. Therefore, we have the $T = P_{n_k}T$. So, we have found a subsequence which converges to this and therefore, this.

(Refer Slide Time: 07:53)

(b) TE I (V, lp) Kp coo comp =) The the limit of * finite rank operators Sol Pre = (x,, , x, o, ...) Arelp. Appely (a). (9) H Hilliert op TEZCHI. self-ody. (i) Show that T2 cat =) - confect (ii) If for some NZZ, This compact, show that This cat.

(9) H Hillout op TEZCHI. self-self. (i) Show that T2 cot =) - confact. (1) It for some NB2, This compact, show that This cat. Ser in Stand buld ag. 3 annu ve. Thene 372 $\begin{pmatrix} -2 \\ 1 \\ \mathbf{x}_{n_{\mathbf{k}}} - \mathbf{1}^{2} \\ \mathbf{x}_{n_{\mathbf{k}}} \\ \mathbf{x}_{n_{\mathbf{k}}} \end{pmatrix} \longrightarrow \mathbf{0} .$ = 1/1 m - 1 m - 1 m - 1 m - 5 m - 5 m -121 ie. T cpt. (ii) $\overline{}^{\prime}$ (μ =) $\overline{}^{\prime}$ (μ =) $\overline{}^{\prime}$ (μ

(b) $T \in L(V, l_n)$, $1 \le p < \infty$ compact implies T is the limit of finite rank operators.

Solution: You put $P_n(x) = (x_1, x_2, \cdot, \cdot, \cdot, x_n, 0, \cdot, \cdot, \cdot)$ for every x in l_p . So, you cut it off. So, then P_n satisfies the conditions of, so apply (a), that is all.

Problem 9: *H* Hilbert space, $T \in L(H)$ self-adjoint.

- (i) Show that T^2 compact implies T compact.
- (ii) If for some n, T^n is compact, show that T is compact.

Solution: (i) So, let us take $\{x_n\}$ is a bounded sequence. So, there exists a subsequence $\{x_{n_k}\}$ which weakly converges to x and you have $T^2 x_{n_k} \to T^2 x$. Therefore, $\langle T^2 (x_{n_k} - x), x_{n_k} - x \rangle$. So, $T^2 (x_{n_k} - x)$ converges in norm, $x_{n_k} - x$ converges weakly and we have seen therefore, $\langle T^2 (x_{n_k} - x), x_{n_k} - x \rangle$. So, $\langle T^2 (x_{n_k} - x), x_{n_k} - x \rangle$ should converge to 0. But what is this? This equal to, I take one T to the

other side, so $T = T^*$. So, I get $T\left(x_{n_k}\right) - T(x)$ and if I take one T to that side, I get the same thing and so I get $||T\left(x_{n_k}\right) - T(x)||^2 \to 0$ that is $T\left(x_{n_k}\right) \to T(x)$, that is T is compact.

So, (ii) is now immediate. Suppose, T^n is compact this implies that T^m is compact for all $m \ge n$. Because composition of compact operators with anything is compact. So, this means for l large, T^{2^l} is compact, this implies $T^{2^{l-1}}$ is compact by what we saw and this implies that $T^{2^{l-2}}$ is compact and so on. This implies that T^2 is compact ultimately and that implies T is compact. So, that completes. So, we will continue the exercises next time.