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So, we will now give a variational characterization of the eigenvalues and eigenvectors for a

compact self-adjoint operator. So, Hilbert space which is separable and compact𝐻 𝑇∈𝐿(𝐻)

and self-adjoint. So, you have an orthonormal basis of eigenvectors. So, for each eigenvector

choose a corresponding eigenvalue and then number the eigenvalues in decreasing order for

non-negative eigenvalues and in increasing order for non-positive eigenvalues.

So, for the result I am going to state below, it does not matter where we put the eigenvalue 0,

if at all it is an eigenvalue because it will come last. So, you will have that , so we call themλ

and .                                                 λ
1
+ ≥ λ

2
+≥⋅⋅⋅≥0 λ

1
− ≤ λ

2
− ≤ ⋅⋅⋅ ≤ 0

Now, I put less than or equal to or greater than or equal to because they all may not be

distinct eigenvalues. So, if we have started with the basis of eigenvectors for each

eigenvector, we have chosen an eigenvalue and so, many more than one eigenvector may

correspond to the same eigenvalue.

So, for instance there may be an eigenvalue whose geometric multiplicity is that means,3

there will be eigenvectors in the orthonormal basis which correspond to the same3



eigenvalue. So, for instance if , , may all be the same, so like that. So, this numberingλ
2

λ
3

λ
4

by repeating eigenvalues according to their geometric multiplicity. So, if the null space of

, say has dimension then the corresponding will occur times consecutively in thisλ
𝑖

− 𝑇 5 λ 5

list somewhere. And also, all these need not exist all the time, for instance you may have an

operator which has only non-negative eigenvalues or only non-positive eigenvalues or a

mixture of both, both may be infinite sets one may be finite and so on.

So, all kinds of things are happening we are just giving you a numbering here. So, the𝑢
𝑖
+

eigenvector in the basis corresponding to and is eigenvector in the basis correspondingλ
𝑖
+ 𝑢

𝑖
−

to . So, these are all the eigenvalues and eigenvectors which we have. So, we have saidλ
𝑖
−

and we said to be the span of , that means is the span of𝑉
0

= {0} 𝑉
𝑚
± 𝑢

1
±, 𝑢

2
±, ⋅, ⋅, ⋅, 𝑢

𝑚
±{ } 𝑉

𝑚
+

and will be the span of . So, this is the notation which𝑢
1
+, 𝑢

2
+, ⋅, ⋅, ⋅, 𝑢

𝑚
+{ } 𝑉

𝑚
− 𝑢

1
−, 𝑢

2
−, ⋅, ⋅, ⋅, 𝑢

𝑚
−{ }

we are having.
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So, now we have the following theorem.

Theorem: So, let , then . This is also equal to the .𝑚≥1 λ
𝑚
+ = (𝑇𝑢

𝑚
+ , 𝑢

𝑚
+) (𝑇𝑣,𝑣)

‖𝑣‖2  

And the third one is the .(𝑇𝑣,𝑣)

‖𝑣‖2  

So, let us comment briefly on these things, the first one is just saying u is more or less

obvious. So, we will see it in a moment. Now, this for this is called the Rayleigh(𝑇𝑣,𝑣)

‖𝑣‖2 𝑣≠0

quotient. So, we are expressing the eigenvalues as the maxima or minima of the Rayleigh

quotient over some subspaces. So, there is some constrained optimization problem which we

are showing, that is why we call these as the variational characterizations. Now, the first two



depend on the orthonormal basis which you have chosen. The basis can be chosen in many

ways. So, we are choosing something and so, this depends on that. The third one does not

depend on any basis, so this is called the intrinsic characterization, it does not depend on the

choice of eigenvectors. So, that is why this is called intrinsic, so it is entirely independent of

its basis invariant. So, let us try to prove this.

Proof: First one is obvious, so you have , so you take the inner product, so𝑇𝑢
𝑚
+ = λ

𝑚
+𝑢

𝑚
+ = λ

𝑚
+

, and , and therefore, . So, that proves𝑇𝑢
𝑚
+ , 𝑢

𝑚
+( ) = λ

𝑚
+(𝑢

𝑚
+ , 𝑢

𝑚
+) 𝑢

𝑚
+ , 𝑢

𝑚
+( ) = 1 𝑇𝑢

𝑚
+ , 𝑢

𝑚
+( ) = λ

𝑚
+

the first one that is almost immediate. Now, let us see, so let . So, you have an𝑣∈𝐻

orthonormal basis of eigenvectors and therefore, you can write

. I am not writing the limits, because as I said, they may be𝑣 =
𝑘
∑(𝑣, 𝑢

𝑘
+)𝑢

𝑘
+ +

𝑛
∑(𝑣, 𝑢

𝑛
−)𝑢

𝑛
−

finite, infinite, they may not exist, etc. So, we are just writing sigma over , sigma over .𝑘 𝑛

And so, what is ? . So, then you take ,𝑇𝑣 𝑇𝑣 =
𝑘
∑ λ

𝑘
+ 𝑣, 𝑢

𝑘
+( )𝑢

𝑘
+ +

𝑛
∑ λ

𝑛
−(𝑣, 𝑢

𝑛
−)𝑢

𝑛
− (𝑇𝑣, 𝑣)

is what? So, when you take the inner product , so all cross terms are going to(𝑇𝑣, 𝑣) (𝑇𝑣, 𝑣)

disappear because of the orthogonality only the squared terms are going to remain. So,

. And recall that all ’s are negative and𝑇𝑣, 𝑣( ) =
𝑘
∑ λ

𝑘
+ | 𝑣, 𝑢

𝑘
+( )|

2
+

𝑛
∑ λ

𝑛
−| 𝑣, 𝑢

𝑛
−( )|

2
λ

𝑛

therefore, . So, now we have, .
𝑘
∑ λ

𝑘
+ | 𝑣, 𝑢

𝑘
+( )|

2
+

𝑛
∑ λ

𝑛
−| 𝑣, 𝑢

𝑛
−( )|

2
≤

𝑘
∑ λ

𝑘
+ | 𝑣, 𝑢

𝑘
+( )|

2
𝑣⊥𝑉

𝑚−1
−

So, that means, all the basis up to all these elements will disappear and therefore, you𝑚 − 1

have . So, now, we have numbered the thing positive eigenvalues𝑇𝑣, 𝑣( ) ≤
𝑘≥𝑚
∑ λ

𝑘
+ | 𝑣, 𝑢

𝑘
+( )|

2

in the decreasing order, so the biggest of them will be and then all the highest for the otherλ
𝑚
+

it will be less. So, we have is less than or equal to the biggest of them. So,𝑘
𝑘≥𝑚
∑ λ

𝑘
+ | 𝑣, 𝑢

𝑘
+( )|

2

that is equal to and . Therefore, you have theλ
𝑚
+

𝑘≥𝑚
∑  𝑣, 𝑢

𝑘
+( )|||

|||
2
 λ

𝑚
+

𝑘≥𝑚
∑  𝑣, 𝑢

𝑘
+( )|||

|||
2

≤ λ
𝑚
+‖𝑣‖2

and this is true for all the ’s and therefore, in particular . But(𝑇𝑣,𝑣)

‖𝑣‖2 ≤ λ
𝑚
+ 𝑣 (𝑇𝑣,𝑣)

‖𝑣‖2   ≤ λ
𝑚
+



and therefore, and we have the . So, and therefore, that is equal to𝑢
𝑚
+ ⊥ 𝑉

𝑚−1

(𝑇𝑢
𝑚
+ ,𝑢

𝑚
+)

‖𝑢
𝑚
+‖

2 = λ
𝑚
+

. So, there is an element here for which this is attained and therefore, you haveλ
𝑚
+

. So, that is the second statement which we have.(𝑇𝑣,𝑣)

‖𝑣‖2  = λ
𝑚
+
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So, now for the third one. So, let contained in , , then𝑉 𝐻  dim 𝑑𝑖𝑚 𝑉 = 𝑚 − 1 

Claim: there exists a such that and .𝑢∈𝑉
𝑚
+ 𝑢≠0 𝑢⊥𝑉

Why is this so? So, we can argue in two different ways. Suppose this is not true, that means

there is no non-zero element which is orthogonal to all it. That means that is𝑉
𝑚
+ ∩ 𝑉⊥ = {0}

what we are seeing. But because is an dimensional space and𝑉⊥ = 𝑚 − 1 𝑉 𝑚 − 1

therefore, you cannot have an dimensional space completely non intersecting with it𝑚

because the codimension is only and we have dimension. Therefore, you have𝑚 − 1 𝑚

definitely, this is a contradiction. Or the other way if you want to look at, is that is in𝑢 𝑚

dimensional space, so can be . So, you need constants is to be determined.𝑢
𝑖=1

𝑚

∑ α
𝑖
𝑢

𝑖
+ 𝑚 α

𝑖

Now, we are giving by saying it is orthogonal to dimensional space we are giving𝑚 − 1

condition and therefore, there is still one more condition free for you and therefore,𝑚 − 1

that will help you to determine the vector . So, there will be more than one vector in fact and𝑢

therefore, you always have a which is non-zero such that is orthogonal to . Therefore,𝑢 𝑢 𝑉

. So, let us compute . So, and therefore,(𝑇𝑣,𝑣)

‖𝑣‖2  ≥ (𝑇𝑢,𝑢)

‖𝑢‖2
(𝑇𝑢,𝑢)

‖𝑢‖2 𝑢 =
𝑖=1

𝑚

∑ α
𝑖
𝑢

𝑖
+ ‖𝑢‖2 =

𝑖=1

𝑚

∑ |α
𝑖
|2

. And is nothing but again similar to the calculation which we have already done is(𝑇𝑢, 𝑢)

. Now, we have again remembered that we are determining the eigenvalues,
𝑖=1

𝑚

∑ |α
𝑖
|2λ

𝑖
+



numbering the eigenvalues in decreasing order and therefore, will be the biggest is theλ
1
+ λ

𝑚
+

last, so which is . Therefore, . Therefore,
𝑖=1

𝑚

∑ |α
𝑖
|2λ

𝑖
+ ≥ λ

𝑚
+

𝑖=1

𝑚

∑ |α
𝑖
|2 λ

𝑚
+‖𝑢‖2 (𝑇𝑢,𝑢)

‖𝑢‖2 ≥ λ
𝑚
+

and this is true for any dimensional space. Therefore, if you take the inf(𝑇𝑣,𝑣)

‖𝑣‖2  ≥ λ
𝑚
+ 𝑚 − 1

of , , this is still true. Now, compact implies that is in fact𝑉⊂𝐻 𝑉 = 𝑚 − 1   𝑇 (𝑇𝑣,𝑣)

‖𝑣‖2  

attained, is in fact equal to . Because you take a maximizing sequence then(𝑇𝑣,𝑣)

‖𝑣‖2  (𝑇𝑣, 𝑣)

will converge strongly, will converge weekly and therefore, actually the limit will be𝑣

maximiser and therefore, it will attain and it will also be orthogonal to and therefore, it will𝑉

attain the maximum, so the sup is actually a max. And we have already seen that

, is dimensional space. So, there is one space for which this is(𝑇𝑣,𝑣)

‖𝑣‖2  =  λ
𝑚
+ 𝑉

𝑚−1
𝑚 − 1

attained and therefore, this implies that , so that is the third statement which we(𝑇𝑣,𝑣)

‖𝑣‖2  = λ
𝑚
+

have proved. So, we have proved all the three statements and we have shown this.
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So, remark,

Remark: Similar theorem, similar result for . So, interchange max and min, you will getλ
𝑚
−

the corresponding results.



Now corollary of the previous result. What is ? So, is the . So, but that is , soλ
1
+ λ

1
+ ·  𝑚 = 1

we have and consequently you will have that it is orthogonal is nothing but the whole0 0

space.

Corollary: So, .λ
1
+ = (𝑇𝑣,𝑣)

‖𝑣‖2   

You can also see directly from this, from this statement here. So, you have

and therefore, this is less than or equal to because𝑇𝑣, 𝑣( ) ≤
𝑘
∑ λ

𝑘
+ | 𝑣, 𝑢

𝑘
+( )|

2
λ

1
+

𝑘
∑  | 𝑣, 𝑢

𝑘
+( )|

2

that is the biggest of them all and consequently and then for the you already haveλ
1
+‖𝑣‖2 𝑢

1
+

attained it and therefore, the maximum over the whole space is in fact and this is a veryλ
1
+ 

useful thing because you get directly a maximization problem which you want to solve for

the first eigenvalue and therefore you can find it. So, we will wind up with this and then we

will do the exercises.


