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Exercise 1. Let C0 denote the collection of all sequences (real or complex) converging to zero,

show that C0  is a closed subspace of l∞. 

Solution: So  C0  is set of all sequences real sequences, if you are working with the real field,

complex sequences if you are working with the complex field. Now, it is certainly a subspace of

l∞  because if you have two sequences converging to 0 there is sum also converges to 0. If you

have a sequence converging to 0 and you multiply every term by α   that will also still converge

to 0 and every sequence which is convergent is automatically bounded so it is part of l∞, so it is

clear that C0  is subspace of l∞. 

So, we only have to show that it is closed. To show that it is closed, let (x(n)) be a sequence in C0

such that x(n)→x  in l∞. What must you show to show that x∈C0? Let ϵ>0. Then there exists N

such that for all n≥N , we have ||x(n)−x||∞<
ϵ
2

. What does this imply? For every i  you have mod



x i
(n )−x i<

ϵ
2

. also x(N )
∈C 0. Therefore, there exists a k  such that for all i≥ k, we have |x i

(N )|<
ϵ
2

 (it is

a sequence which goes to 0, therefore, after some stage it can be made as small as you like).

Therefore, for all i≥ k, you have 

|x i|≤|x i
(N )−x i|+|xi

(N )|≤
ϵ
2
+
ϵ
2
=ϵ .

Therefore, for all i≥ k, |x i|≤ ϵ .Tthis means that x∈C0. So, this completes the proof. 
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Exercise 2. Show that C1[0,1 ] with the sup-norm is not complete. 

Solution: This is just very easy. You have sup-norm is the norm. We have Weierstras theorem.

Weierstras  theorem  theorem  says  if  f ∈C1 [0,1 ],  then  there  exists  a  sequence  (Pn)  of

polynomials, such that Pn→f  uniformly that means ||Pn−f||∞→0. 

This sequence  (Pn) of polynomials are contained in  C1 [0,1 ] because they are all polynomials,

hence infinitely differentiable. Now, Pn→f  implies (Pn) is Cauchy. So, But f  not necessarily in

C1 [0,1 ]. So, choose  f ∉C1 [0,1 ], so it is a continuous function but it is not differentiable, then

also you have a a sequence (Pn)  of polynomials, such that Pn→f  uniformly. So, this sequence

will be a Cauchy sequence which converges outside and therefore this space is not complete. 



(Refer Slide Time: 06:38) 



Exercise 3. Now we want to make C1 [0,1] complete. Let V=C1[0,1 ] and define 

||f||1=max {||f||∞ ,||f
'||∞}.

Then||f||1defines norm on C1[0,1] and this space, ||f||1≥0 and norm ||f||1=0 means ||f||∞=0 and

therefore,  in  particular,  this  implies  that  f=0.  Conversely  f=0 implies  ||f||1=0 and

||αf||1=|α|||f||1is  obvious.  What  about  triangle  inequality?  So,  if  you  have

||f +g||∞≤||f||∞+||g||∞≤||f||1+||g||1 and ||(f +g)'||∞≤||f '||∞+||g||∞≤||f||1+||g||1. Therefore you have the

maximum is also true, this means that ||f +g||1≤||f||1+||g||1.

 Now, what about the completeness? If  ( f n) is Cauchy in C1 [0,1] then ( f n) is Cauchy in C [0,1]

and ( f n ' ) is Cauchy in C [0,1]. 

So, let us take f n→f  in C [0,1],  and f n '→g in C [0,1], then what does this mean? We now know

convergence in  ¿∨.∨|∞ is the same as uniform convergence. So, you have  f n→f , and  f n '→g

uniformly.  Then from real analysis we know that that f  is differentiable and f '=g and therefore

this implies that f n→f  in C1 [0,1] and therefore C1 [0,1] is complete. (We are using the theorem

in analysis, which says that if the derivative converges uniformly and in fact you need much less,

if the function converges at one point and the derivative converges uniformly, then we say that

the function itself converges uniformly to a differentiable function whose derivative is the limit). 
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Exercise 4.  Consider  C [0,1] define  ||f||1=∫
[0,1]

|f (t )|dt .  Show that  the space is  not complete.

Solution: ||f||1 is non negative and ||αf||1=|α|||f||1 .Triangle inequality is also trivial. Also, if you

have zero function, the integral is 0, so, ||f||1=0. Conversely, if ||f||1=0 i.e., ∫
[0,1]

|f (t )|dt=0.This

implies that f=0. Why? Because if f  were not 0 then there exists t 0 such that |f ( t0 )|>0. Hence,

there exists J⊆ [0,1] with t 0∈ J  and |f ( t )|≥
1
2
|f (t 0)|,∀ t ∈J . 

This  will  imply that  ∫
[0,1]

|f (t )|dt ≥∫
J

|f (t )|dt ≥
1
2
|f ( t0 )|length (J )>0that  is  a contradiction.  So, we

have that if ||f||1=0 then f=0. 

So, now we have to show that it is not complete.
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Define ( f n) in the following fashion. 

f n=0 on [0 ,
1
2
−
1
n
] then f n is linear on [

1
2
−
1
n
, 1
2
] and f n=1 on [

1
2
,1].

Now we want to show that the function ( f n) is Cauchy. Let us assume that m>n. Then, you have

that  f m≤ f n and therefore  ||f m− f n||1=∫
[0,1]

|( f m− f n ) ( t )|dt=
1
2
(
1
n
−
1
m

). And this implies that  ( f n) is

Cauchy. So, now let us see whether it converges at all. 



Let f n→f  in C [0,1 ] . That means ∫
[0,1]

|( f n− f ) ( t )|dt→0. And that implies ∫
[0 ,
1
2

]

|( f n−f ) (t )|dt→0 and

∫
[
1
2
,1]

|( f n−f ) (t )|dt. But  [
1
2
,1],  f n=1, therefore,  ∫

[
1
2
,1]

|( f n−f ) (t )|dt= ∫
[
1
2
,1]

|1− f (t )|dt=0
. This implies

f=1 on [
1
2
,1].  

So, on [0 , 12 ] , we have

∫
[0 ,
1
2
−
1
n
]

|( f n−f ) (t )|dt+ ∫
[
1
2
−
1
n
,
1
2
]

|( f n− f ) ( t )|dt→0

i.e.,  ∫
[0 ,
1
2
−
1
n
]

|f (t )|dt+ ∫
[
1
2
−
1
n
,
1
2
]

|( f n−f ) (t )|dt→0

Now, f n are all bounded and they are all less than equal to 1. Further, since ( f ¿¿n)¿converges to

f , |f|≤C (it is a continuous function on a compact set, therefore, it has to be less than equal to

constant). Thus, ∫
[
1
2
−
1
n
,
1
2
]

|( f n−f ) (t )|dt ≤ (1+C ) length([ 12−
1
n
,
1
2 ])=

(1+C )

n
→0.

Also,  by  the  Monotone  convergence  theorem  ∫
[0 ,
1
2
−
1
n
]

|f (t )|dt→ ∫
[0 ,
1
2
]

|f (t )|dt
.  Therefore,

∫
[0 ,1
2

]

|f ( t )|dt=0.
 This  means  f=0 on  [0 ,

1
2
] and  we  know  that  f=1 on  [

1
2
,1] and  that  is  a

contradiction because you have a continuous function and it is not possible. Therefore,  ( f n) is

Cauchy, but it will not converge to anything.
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Exercise 5.  Let us consider C1 [0,1 ] with the ||.||1 i . e . , ||f||1=max {||f||∞ ,||f '||∞}. 

Define T :C1 [0,1 ]↦C [0,1] as T ( f )=f ' . Show that T  is continuous and in fact, ||T||=1. 

Solution.:  ¿T ( f ) (t )∨¿|f ' (t )|≤||f '(t )||∞≤||f||1 . Therefore,  ||T (f )||∞≤||f||1 . This  implies  that  T  is

continuous and ||T||≤1. 

Now, you take f (t )=t  then ||f||∞=1=||f '||∞ and therefore the maximum is realized and therefore

you have ||T||=1.


