Functional Analysis Professor S. Kesavan Department of Mathematics The Institute of Mathematical Sciences

Lecture No. 69 Spectrum of a compact self-adjoint operator

(Refer Slide Time: 00:16)

COMPACT SELF-ADJOINT OPERATORS H Hilliert op. TEd(4). T ralf-ody T=7+ T = adj =) = (T) C iR m = ing(Tu, v) C = CT) C [m, M] KUK=1M = app(TV,U) m, MEO(T) TGI(H) rely-adj. oc7= 803 => T=0 Cor. Pf: m=M=0 (IU,U)=0 +U=> (olace +/C) T=0 Theorem. Let It be a separable Hilbert op TEZ(H) he rest-adj and Compact operator. Then H admits an arthonormal basico convicting of eigenvectors of T .. 1/10 > Q 0 19 Nov 18:54-19 Nov 18:57

We will now study compact self-adjoint operators.

So, *H* Hilbert space and $T \in L(H)$. We say *T* is self-adjoint, if $T = T^*$ and we have already seen the following thing.

T is self-adjoint $\Rightarrow \sigma(T) \subset \mathbb{R}$. And in fact, we have also seen that $\sigma(T) \subset [m, M]$, where $m = \inf_{||v||=1}(Tv, v)$ and capital $M = \sup_{||v||=1}(Tv, v)$. And you also saw that $m, M \in \sigma(T)$. This was done in the exercises of the Hilbert space chapter.

Corollary: $T \in L(H)$ self-adjoint and $\sigma(T) = \{0\} \Rightarrow T = 0$.

Proof. $\sigma(T) = \{0\}$ means m = M = 0. Therefore, you have $(Tv, v) = 0 \forall v$ and this implies T = 0, since H is over the complex numbers, we saw that it is not true for the reals.

Theorem: Let *H* be a separable Hilbert space and $T \in L(H)$ be self-adjoint and compact operator. Then, *H* admits an orthonormal basis consisting of eigenvectors of *T*. It is obviously countable because *H* is a separable Hilbert space.

(Refer Slide Time: 03:35)

Pg: Lot GG1= 203021, 1, 6m3. Set 10=0. Then in norr are all eigenvalues (distinct) of?. $E_{a} = NG), \quad E_{a} = NG - \lambda_{a} D$ OS dim (E) ≤ 00 O < dimEn < 00. Hncm The spaces Er, NZO are all mutually orthogonal. ntm uet, vetm, Tu=xu, Ju=hnv. $\lambda_{n}(u_{1}v) = (\overline{u}_{0}v) = (u_{1}\overline{v}) = \lambda_{m}(u_{1}v)$ (da (m) (u,u) = 0 -) (u,u)=0 nton ueto veto. Tu=2nu, Ju=2nu () $\lambda_{n}(u_{1}v) = (\overline{u}_{0}v) = (u_{1}\overline{v}) = \lambda_{m}(u_{0}v).$ NPTEL $(dn \neq dm) (u, v) = 0 \qquad \rightarrow) (u, v) = 0$ Lot F be made gon by UEn. claim: F is alonge in H. (> FL= 503).

Proof. Let $\sigma(t) = \{0\} \cup \{\lambda_n / n \in \mathbb{N}\}$. Set $\lambda_0 = 0$ and then λ_n , $n \in \mathbb{N}$ are all distinct eigenvalues of T. So, we say $E_0 = N(T)$ and $E_n = N(T - \lambda I)$. Then what do you know

about E_0 ? E_0 could be singleton 0. So, $0 \le \dim(E_0) \le \infty$. On the other hand, $0 < \dim(E_n) < \infty$, $\forall n \in \mathbb{N}$. So, the space E_n , $n \ge 0$ are all mutually orthogonal? Let $n \ne m$. So, you take $u \in E_n$, $v \in E_m$. So, $Tu = \lambda_n u$ and $Tv = \lambda_m v$. So, then if you take $\lambda_n(u, v) = (Tu, v) = (u, Tv) = \lambda_m(u, v)$, because $T = T^*$ and λ_m is real. So, $(\lambda_n - \lambda_m)(u, v) = 0$, and $(\lambda_n - \lambda_m) \ne 0$ and therefore, you have that (u, v) = 0. So, all

these spaces are mutually orthogonal to each other. Let *F* be the space generated by $\bigcup_{n\geq 0} E_n$, so you put all these spaces together and you have. Claim *F* is dense in *H*, which is equivalent to saying $F^{\perp} = \{0\}$. Because, if you have a vector vanishing on *F*, then it vanishes everywhere, that is the Hahn-Banach way of showing a space is dense and therefore, showing $F^{\perp} = \{0\}$ is equivalent to showing *F* is this.

(Refer Slide Time: 07:05)

$$(Learly T(P) \subseteq F \quad u \in F^{\perp}, v \in F$$

$$(T_{u}, v) = (u, T_{v}) = 0.$$

$$G^{u} \in F^{\perp}$$

$$=) T(F^{\perp}) \subseteq F^{\perp}.$$

$$T_{v}: F^{\perp} \Rightarrow F^{\perp} \quad T_{v} = T(F^{\perp}.)$$

$$T_{v} = 0 \quad \text{obviously} \quad 20 \quad 20 \quad 20 \quad 20 \quad e^{f^{\perp}}, u \neq 0$$

$$X \neq 0, \quad X \in O(T_{v}). \Rightarrow X \text{ obviously} = 3 \quad 3v \in f^{\perp}, u \neq 0$$

$$X = T_{v} = T(F^{\perp}) \subseteq F^{\perp}.$$

$$=) \quad X \quad u \neq 0 \quad 2T \quad u \in F \cap F^{\perp}, u \neq 0$$

$$T_{v}: F^{\perp} \Rightarrow F^{\perp} \quad T_{v} = T(F^{\perp}.)$$

$$=) \quad X \quad u \neq 0 \quad 2T \quad u \in F \cap F^{\perp}, u \neq 0$$

$$T_{v}: F^{\perp} \Rightarrow F^{\perp} \quad T_{v} = T(F^{\perp}.)$$

$$T_{v}: F^{\perp} \Rightarrow F^{\perp} \quad T_{v}: F^{\perp} \Rightarrow F^{\perp} \quad T_{v} = T(F^{\perp}.)$$

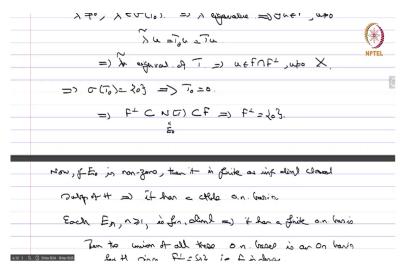
$$T_{v}: F^{\perp} \Rightarrow F^{\perp} \quad$$

So, clearly $T(F) \subset F$ because any eigenvalue is the same. So, it will be in the same E_n and linear combinations will also be, so $T(F) \subset F$. Now, if $u \in F^{\perp}$ and $v \in F$. You have (Tu, v) = (u, Tv). Now, $v \in F$, so Tv is also in F and $u \in F^{\perp}$ and therefore, (Tu, v) = (u, Tv) = 0.

So, this means $T(F^{\perp}) \subset F^{\perp}$. You take $T_0: F^{\perp} \to F^{\perp}$, $T_0 = T|_{F^{\perp}}$. So, T_0 is obviously self-adjoint and compact. Let $\tilde{\lambda} \neq 0, \tilde{\lambda} \in \sigma(T_0)$, so T_0 is self-adjoint compact operator, F^{\perp} is closed. So, it is a Hilbert space on its own and you have a compact self-adjoint operator in

it and therefore, it will have a spectrum. So, assume it has a non-zero element in the spectrum, then implies it is an eigenvalue because it is compact, implies that $\exists u \in F^{\perp}, u \neq 0$. So, as I said, $\lambda u = T_0 u$, but $T_0 u = T u$. This implies that λ is an eigenvalue of *T*, but we have lumped all the eigenvalues together in the space *F*, that means $u \in F \cap F^{\perp}$ and $u \neq 0$, which is a contradiction, you cannot have that. This implies that $\sigma(T_0) = \{0\}$, and by our earlier corollary we have $T_0 = 0$. This implies that $F^{\perp} \subset N(T) \subset F$. This this implies that $F^{\perp} = \{0\}$, that is the only way it is possible.

(Refer Slide Time: 10:03)



Now, if E_0 is non-zero, then it is a finite or infinite dimensional closed subspace of H and therefore, implies it has a countable orthonormal basis. Each E_n , $n \ge 1$ is finite dimensional implies it has a finite orthonormal basis, then the union of all this orthonormal basis is an orthonormal basis for H, since $F^{\perp} = \{0\}$, F is dense. Because the union is orthonormal is clear, if x is orthogonal to all of these basis vectors, then x is orthogonal to the space F and when we saw that $F^{\perp} = \{0\}$ since F is dense and therefore, it is a thing. So, this proves that you have an orthonormal basis for H. So, next we will look at a variational characterization of the eigenvalues.