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We will now discuss the spectrum of a compact operator. Given a matrix, a spectrum is just

the set of all eigenvalues. In the infinite dimensional case, we saw several examples, you

could have eigenvalues, you may not have eigenvalue spectrum consisting of various things,

all kinds of possibilities occur. Now, we will study the case of a compact operator which is

more like the finite dimensional case.

So, more precisely we have the following theorem.

Theorem. Let be an infinite dimensional Banach space and let be compact.𝑉 𝑇 ∈  𝐿(𝑉)

Then:

(a) .0 ∈ σ(𝑇)



(b) Every non-zero element of is an eigenvalue with finite geometric multiplicity. Whatσ(𝑇)

is geometric multiplicity? It is nothing but the dimension of the kernel or null space of

.𝑇 − λ𝐼

(c) If is a sequence of non-zero eigenvalues converging to , then . So, in{λ
𝑛
} λ λ = 0

particular, the non-zero elements of (spectrum) are all isolated because nothing canσ(𝑇)

converge to them.

(d) one of the following alternatives holds, you can have

● . There is nothing else in the spectrum,σ(𝑇) = {0}

● is finiteσ(𝑇)\{0}

● consists of a sequence of eigenvalues converging to 0. So, one ofσ(𝑇)\{0}

these three will hold.
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Proof (a). We already saw that composition of compact map is compact, an identity map is

not compact in infinite dimensional space because the unit ball is not compact and therefore,

you have that compact operator cannot be invertible, so compact not invertible.𝑇 ⇒  𝑇

And therefore, this we have already seen, therefore this 0 has to belong to .σ(𝑇)

(b) Let and then you write and this is a compactλ ≠ 0 𝑇 − λ𝐼 =− λ(𝐼 − λ−1𝑇) 

perturbation of the identity. Therefore, the Riesz-Fredholm theory holds and

if and only if .𝑁(𝐼 − λ−1 𝑇) = {0} 𝑅(𝐼 − λ−1 𝑇) = 𝑉

So, 1-1 if and only if onto and therefore, is invertible and hence is𝐼 − λ−1 𝑇 𝑇 − λ𝐼

invertible. Therefore, , and therefore, implies is anλ ≠ 0 λ ∈ σ(𝑇) ⇒ 𝑁(𝑇 − λ𝐼 ) ≠ {0} λ



eigenvalue. And again, by the Riesz-Fredholm theory this dimension is finite and therefore, λ

has finite geometric multiples, so that proves (b).

(c ) Let be a sequence of distinct non-zero eigenvalues, then there exists such{λ
𝑛
} 𝑢

𝑛
≠ 0

such that . So, claim is linearly independent. The set of all eigenvectors of𝑇𝑢
𝑛

= λ
𝑛
 𝑢

𝑛
{𝑢

𝑛
}

the distinct eigenvalues form a linearly independent set. is independent because .{𝑢
1
} 𝑢

1
≠ 0

So, assume is linearly independent.{𝑢
1
,  .  .  ., 𝑢

𝑛
}
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If possible, let , that means it is not linearly independent since the first are𝑢
𝑛+1

=
𝑖=1

𝑛

∑ α
𝑖
 𝑢

𝑖
𝑛

linearly independent and you are adding to make it dependent that means the last new one is a

linear combination of the previous ones. Now, you multiply both sides by . So,λ
𝑛+1

𝑖=1

𝑛

∑ α
𝑖
 λ

𝑛+1
 𝑢

𝑖
= λ

𝑛+1
 𝑢

𝑛+1
= 𝑇(𝑢

𝑛+1
) =

𝑖=1

𝑛

∑ α
𝑖
 𝑇𝑢

𝑖
=

𝑖=1

𝑛

∑ α
𝑖
λ

𝑖
 𝑢

𝑖

. But you know is linearly independent and⇒   
𝑖=1

𝑛

∑ α
𝑖
(λ

𝑛+1
− λ

𝑖
) 𝑢

𝑖
= 0 {𝑢

1
,  .  .  ., 𝑢

𝑛
}

. So, this implies that and that implies that and that is aλ
𝑛+1

− λ
𝑖

≠ 0 α
𝑖

= 0,   ∀𝑖 𝑢
𝑛+1

= 0

contradiction. You cannot have an eigenvector which is zero. Therefore, the are linearly𝑢
𝑛
'𝑠

independent. Now, you say, . So, this is an -dimensional subspace𝑉
𝑛

= 𝑠𝑝𝑎𝑛  {𝑢
1
,  .  .  ., 𝑢

𝑛
} 𝑛

therefore closed. And therefore, we have an increasing sequence,

and so on. So, strictly containing a sequence of𝑉
1

⊂ 𝑉
2

⊂ 𝑉
3

⊂.  .  . ⊂ 𝑉
𝑛

⊂ 𝑉
𝑛+1

⊂  .  .  .

finite dimensional (hence closed) subspaces. Now we can apply the Riesz lemma you have a

closed subspace therefore, there exists a such for each such that𝑣
𝑛

∈ 𝑉
𝑛

𝑛 ≥ 2 ||𝑣
𝑛
|| = 1

and . We will take , thus .𝑑(𝑣
𝑛
,  𝑉

𝑛−1
) ≥ 1 − ϵ ϵ = 1

2 𝑑(𝑣
𝑛
,  𝑉

𝑛−1
) ≥ 1

2

Let if possible, then we will get a contradiction and therefore, has to onlyλ
𝑛
 →  λ ≠ 0 {λ

𝑛
}

converge to 0. So, look at the sequence, is bounded. Why is it bounded?{ 1
λ

𝑛
 𝑣

𝑛
} ||𝑣

𝑛
|| = 1

converges to , so it is bounded away from 0.λ
𝑛

λ ≠ 0

So, is a bounded sequence and therefore, is a bounded sequence and also if{ 1
λ

𝑛
} { 1

λ
𝑛

 𝑣
𝑛
}

What do you have? , because .2 ≤ 𝑚 < 𝑛 ,  𝑉
𝑚−1

⊂ 𝑉
𝑚

⊂ 𝑉
𝑛−1

⊂ 𝑉
𝑛

𝑛 > 𝑚



(Refer Slide Time: 12:21)

Now, .Now, you1
λ

𝑛
𝑇 𝑣

𝑛
− 1

λ
𝑚

 𝑇𝑣
𝑚

= 1
λ

𝑛
(𝑇𝑣

𝑛
− λ

𝑛
𝑣

𝑛
) − 1

λ
𝑚

(𝑇𝑣
𝑚

− λ
𝑚

𝑣
𝑚

) + (𝑣
𝑛

− 𝑣
𝑚

)

can look at . What about this? So,𝑇𝑣
𝑛

− λ
𝑛
𝑣

𝑛

then𝑣
𝑛

=
𝑖=1

𝑛

∑ α
𝑖
 𝑢

𝑖
⇒ 𝑇𝑣

𝑛
= α

𝑛
 λ

𝑛
 𝑢

𝑛
+

𝑖=1

𝑛−1

∑ α
𝑖
 λ

𝑖
 𝑢

𝑖

.λ
𝑛
 𝑣

𝑛
= α

𝑛
 λ

𝑛
 𝑢

𝑛
+

𝑖=1

𝑛−1

∑ α
𝑖
 λ

𝑖
 𝑢

𝑖
⇒  𝑇𝑣

𝑛
− λ𝑣

𝑛
∈ 𝑉

𝑛−1

Similarly, i.e., and .(𝑇𝑣
𝑚

− λ
𝑚

𝑣
𝑚

) ∈ 𝑉
𝑚−1

,  (𝑇𝑣
𝑚

− λ
𝑚

𝑣
𝑚

) ∈ 𝑉
𝑛−1

,  𝑣
𝑚

∈ 𝑉
𝑛−1



, where . Therefore, || by1
λ

𝑛
𝑇 𝑣

𝑛
− 1

λ
𝑚

 𝑇𝑣
𝑚

= 𝑣
𝑛

− 𝑤 𝑤 ∈ 𝑉
𝑛−1

1
λ

𝑛
𝑇 𝑣

𝑛
− 1

λ
𝑚

 𝑇𝑣
𝑚

|| ≥  1
2

choice and this is a contradiction because ( is a compact operator ) and therefore,{ 1
λ

𝑚
 𝑇𝑣

𝑚
} 𝑇

it must have a convergent subsequence. || implies that1
λ

𝑛
𝑇 𝑣

𝑛
− 1

λ
𝑚

 𝑇𝑣
𝑚

|| ≥  1
2 { 1

λ
𝑛

 𝑇𝑣
𝑛
}

is bounded and has no convergent subsequence and that is the contradiction to the

compactness. Therefore, this implies that has to be equal to 0, so that proves ( c) .λ

(d) , take So, this is a compact closed set, this is∀ 𝑛 ∈ ℕ σ(𝑇) ⋂  {λ ∈  ℂ / |λ| ≥ 1
𝑛 }.  

compact, so the intersection is compact. So, if it is compact, if it has an infinite number of

elements, then there must be a convergent subsequence which should convert to something

whose norm is bigger than or equal to that is not possible by part c. So, by (c ), this set is1
𝑛

either empty or finite and therefore, this implies that is the union of all these sets isσ(𝑇)\{0}

either empty, finite, or consists of a countable number of elements.
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So, it is a countable number of elements, so you can number them as some sequence in{λ
𝑛
} 

. Then you take any subsequence . So, that is instantly in the compact set,σ(𝑇)\{0} {λ
𝑛

𝑘

}

and therefore, there exists a further subsequence converge and that we just sawσ(𝑇) {λ
𝑛

𝑘
𝑙

}

has to converge only to 0.

So, every subsequence has a further subsequence which converges to 0 and this implies that

. So, this is a very beautiful topological fact, very useful, very trivial observation, in aλ
𝑛

→  0

topological space given a sequence such that every subsequence has a further subsequence

which converges to the same limit, then the entire sequence converges to that limit.

So, whatever may be the sequence or subsequence, you choose the limit that is always the

same, then the entire sequence converges to that limit. Just think about it, it is just a

two-minute thing and you can easily show that it is very very useful when you have

convergence of a sub sequence and you want to assert something about the convergence of

the whole sequence you show that the limit is independent of the sub sequence chosen and

therefore, the entire sequence will converge. So, a very very useful topological tool.
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Example. , if it is finite rank then it is compact. So, let us take such that𝑇:  𝑉 →  𝑉 𝑇:  𝑙
2

→ 𝑙
2

. So, what is ?𝑇𝑥 = (0,  𝑥
1
,  .  .  ., 𝑥

𝑛
,  0,  .  .  .  . 0) 𝑇2 𝑇2𝑥 = (0,  0,  𝑥

1
,   .  .  .,  𝑥

𝑛−1
,  0,  .  .  .) 

↑ (n+1)

So, , and therefore, it is an important operator. Hence, is the only 𝑇𝑛+1 ≡ 0 λ = 0

eigenvalue and of course, you can easily find an eigenvector. For instance, is an𝑒
𝑛+1

eigenvector . You have that is the only possible eigenvalue. So,𝑇(𝑒
𝑛+1

) = 0 λ = 0

and has finite rank and hence compact. σ(𝑇) = {0} 𝑇
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Next, you look at again and let be a sequence of complex numbers which go𝑇:  𝑙
2

→ 𝑙
2
 {α

𝑛
}

to 0 and then you define in the following way, . And you𝑇 𝑇𝑥 = (α
1
𝑥

1
,  α

2
𝑥

2
,  .  .  , α

𝑛
𝑥

𝑛
,  .  .)

define . Then, has finite rank and what can you say𝑇
𝑛
𝑥 = (α

1
𝑥

1
,  α

2
𝑥

2
,  .  .  , α

𝑛
𝑥

𝑛
,  0,  0 .  .) 𝑇

𝑛

about ||𝑇
𝑛
𝑥 − 𝑇𝑥|| =

𝑖=𝑛+1

∞

∑ |α
𝑖
|2 |𝑥

𝑖
|2 ≤ sup

𝑖≥𝑛+1
|α

𝑖
|2|𝑥

𝑖
|2 

So, this means that because .||𝑇
𝑛
𝑥 − 𝑇𝑥|| →  0 α

𝑛
→ 0

So, sup after some finite stage can be made as small as (())(22:40) because all the must beα

less than or equal to after some finite stage and therefore, this goes to 0. So, has finiteϵ 𝑇
𝑛
 

rank and is the limit of finite rank operators. So, this implies that is compact. So, now, let𝑇 𝑇

us see what happens,

1, , this implies T is 1-1 implies 0 not an eigenvalue.α
𝑖
 ≠ 0   ∀ 𝑖

2. finitely many , implies 0 is an eigenvalue with finite geometric multiplicity, why?  α
𝑖

= 0

Because eigenvalue with eigenvector , so that is the reason why you get this.𝑎
𝑖

𝑒
𝑖
  ∀ 𝑖
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3. for infinitely many . That means, let us say for all the odd and evenα
𝑖

= 0 𝑖 α
𝑖

= 0 α
𝑖

≠ 0

and go to 0. In that case, you have that is an eigenvalue with infinite geometricλ = 0

multiplicity, namely null space, has infinite dimension. So, you see for the eigenvalues 0, we

can say nothing, it may not be an eigenvalue as we saw in the previous example, it may be

the only eigenvalue that is possible or it may not be an eigenvalue as we saw in 1 and it may

be an eigenvalue of finite multiplicity or an eigenvalue of infinite multiplicity.



4. if only finitely many are non-zero, then is finite.α
𝑖

σ(𝑇)\{0}

5. if infinitely many are non-zero, then , which is infinite and α
𝑖
 σ(𝑇)\{0} = {α

𝑖
 / 𝑖 ≠ 0}

because of our assumption because it gives you a subsequence and therefore, it has toα
𝑖

→  0

go to 0.

So, all the possibilities in statement (d) of the theorem have been satisfied.

Example. and then you take .𝑇:  𝑙
2

→ 𝑙
2

𝑇𝑥 = (α
1
𝑥

1
,  α

2
𝑥

2
,  .  .  , α

𝑛
𝑥

𝑛
,  .  .)

So, compact, as we saw above.α
𝑖

→ 0 ⇒ 𝑇

Now, if is compact, each being an eigenvalue we have, . So, it becomes a𝑇 α
𝑖

α
𝑖

→ 0

sequence of eigenvalues, it must converges to 0 and therefore, we see that is compact if and𝑇

only if . So, this is about the general structure of the spectrum of a compact linearα
𝑖

→ 0

operator. Now, we will next look at compact self-adjoint linear operators which are very

special and have lots of applications and that we will do next time.


