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We conclude this section with a theorem, which you can think of as a generalization of the

Lax-Milgram lemma. Let me recall the Lax-Milgram lemma. So, is a Hilbert space and𝐻

then . I am taking a real Hilbert space. Bilinear form is continuous𝑎(.  ,  .): 𝐻 × 𝐻 →  ℝ 𝑎

that means such that and is H-elliptic that∃ 𝑀 > 0 |𝑎(𝑢,  𝑣)| ≤ 𝑀||𝑢|| ||𝑣||  ∀ 𝑢, 𝑣 ∈ 𝐻 𝑎

means such that Given . Then Lax-Milgram∃ α > 0 𝑎(𝑢,  𝑢) ≥ α ||𝑢||2   ∀𝑢 ∈ 𝐻. 𝑓 ∈  𝐻

says, a unique such that . So, I recall I hope you∃ 𝑢 ∈ 𝐻 𝑎(𝑢,  𝑣) = (𝑓,  𝑣)  ∀𝑣 ∈ 𝐻

remember all those things. Now, the ellipticity condition is always a strong one and it is

difficult to have it. So, here is one which relaxes it under some conditions.

Proposition: Let and be Hilbert spaces such that is continuously embedded in with𝑉 𝐻 𝑉 𝐻

dense inclusion, it means is a subspace of , but the inclusion map is continuous with𝑉 𝐻

respect to the respective norms. Assume further that this inclusion  is compact.



And then is a dense subspace of in the topology. Let be a 𝑉 𝐻 𝐻 𝑎(.  ,  .): 𝑉 × 𝑉 →  ℝ

continuous bilinear form such that . So, this is all the condition, so𝑎(𝑢,  𝑢) = 0 ⇒ 𝑢 = 0

this is much weaker than the ellipticity condition is here. Assume further that and∃ α > 0

such that , we have . So, there is a negativeβ > 0 ∀𝑣 ∈ 𝑉 𝑎(𝑣,  𝑣) ≥  α ||𝑣||
𝑉

2 − β ||𝑣||
𝐻

2

thing, so this is not elliptic at all, but this inequality is good enough. Let be given,𝑓 ∈  𝐻

then a unique such that .------------------------(*)∃ 𝑢 ∈ 𝑉 𝑎(𝑢,  𝑣) = (𝑓,  𝑣)
𝐻

  ∀𝑣 ∈ 𝑉

So, this is the same conclusion as the Lax-Milgram Theorem. But you do not have ellipticity.

Instead you have a compromise, you have a dense inclusion in the Hilbert space, where you

have an inequality of the above form and you also have .  𝑎(𝑢,  𝑢) = 0 ⇒ 𝑢 = 0

(Refer Slide Time: 05:10)



Proof. Consider the bilinear form given by𝐴(.  ,  .): 𝑉 × 𝑉 →  ℝ

.𝐴(𝑣,  𝑤) = 𝑎(𝑣,  𝑤) + β(𝑣,  𝑤)
𝐻

The inner product obviously is in because . Then is continuous, because(𝑓,  𝑣) 𝐻 𝑓 ∈  𝐻 𝐴

,|𝐴(𝑣,  𝑤)| ≤  ||𝑀|| ||𝑣||
𝑉

||𝑤||
𝑉

 +  β ||𝑣||
𝐻

 ||𝑤||
𝐻

 ≤  𝑀 ||𝑣||
𝑉

||𝑤||
𝑉

 + 𝑐2 β ||𝑣||
𝑉

||𝑤||
𝑉

because as is continuously embedded in . So, is clearly||𝑣||
𝐻

≤ 𝑐 ||𝑣||
𝑉

    ∀ 𝑣 ∈ 𝑉 𝑉 𝐻 𝐴

continuous. What about ? . And also, the map is𝐴(𝑣,  𝑣) 𝐴(𝑣,  𝑣) ≥  α||𝑣||
𝑉

2 𝑣 ↦(𝑓,  𝑣)

continuous, because . Therefore, by the Riesz|(𝑓,  𝑣)| ≤ ||𝑓||
𝐻

||𝑣||
𝐻

≤ 𝑐 ||𝑓||
𝐻

||𝑣||
𝑉

presentation theorem you can write , and therefore, you can apply the(𝑓,  𝑣) = (𝑅𝑓,  𝑣)
𝑉

Lax-Milgram lemma. There exists a unique such that .𝑢 ∈ 𝑉 𝐴(𝑢,  𝑣) = (𝑓,  𝑣)
𝐻

= (𝑅𝑓,  𝑣)
𝑉

therefore, you have this .𝐴(𝑢,  𝑣) = (𝑅𝑓,  𝑣)
𝑉

Define . So, . So, therefore, you𝑢 = 𝐺𝑓 α||𝑢||
𝑉

2 ≤  𝐴(𝑢,  𝑢) = (𝑓,  𝑢)
𝐻

= 𝑐 ||𝑓||
𝐻

||𝑢||
𝑉

 

get . Therefore, the mapping is continuous. So, we can now||𝑢||2 ≤  𝑐
α ||𝑓||

𝐻
𝐺:  𝐻 →  𝑉

compose, you have a mapping from to and is included in and this inclusion is𝐺 𝐻 𝑉 𝑉 𝐻

compact. So, this implies that is compact.𝐺:  𝐻 →  𝐻
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So, now assume is a solution of (*). Then for every , you have𝑢 𝑣 ∈ 𝑉

, -----------(**)𝑎(𝑢,  𝑣) + β(𝑢,  𝑣)
𝐻

= (𝑓 + β 𝑢,  𝑣)

and conversely, if solve this then gets cancelled and therefore, .𝑢 β(𝑢,  𝑣)
𝐻

𝑎(𝑢,  𝑣) = (𝑓,  𝑣)

So, solving the original problem (*) is the same as solving the problem (**). So

. So, let us write , so . Therefore,𝑢 = 𝐺(𝑓 + β 𝑢) 𝑓 + β 𝑢 = 𝑧 𝑢 = 𝐺 𝑧

. So, solves (*) if and only if where𝑓 = 𝑧 − β 𝑢 = 𝑧 − β 𝐺𝑧 𝑢 𝑧 − β 𝐺𝑧 = 𝑓

. So, we want to know if you can solve this. So, once you find then you can𝑧 = 𝑓 + β 𝑢 𝑧

say , will give you which is a solution of the original equation. So, it is enough𝑧−𝑓
β β > 0 𝑢

to solve this equation, where now is a compact operator from to . So, is a𝐺 𝐻 𝐻 𝐼 − β 𝐺

compact perturbation of identity in . So, if you want to solve for any , so that means, it is𝐻 𝑓

onto if and only if it is 1-1, so it is enough to check. So, this is the beauty of this theory. So, if

you want to solve any equation you just say, if at all a solution exists then it is unique. So, the

uniqueness implies the existence, so that is a nice thing about these results in finite

dimensions, that is always true. And now, we are having it in this case. So, you prove

uniqueness, that is a much easier thing and that this implies automatically that there exists a

solution for any data. So, assume . Now, this means what?(𝐼 − β 𝐺 )𝑤 = 0 𝑤 = β𝐺 𝑤 ∈ 𝑉



Remember and is included in . So, the range is always contained in . And𝐺:  𝐻 →  𝑉 𝑉 𝐻 𝑉

therefore, Defn. of implies for every . is a𝐺 𝑎(𝑤,  𝑣) + β(𝑤,  𝑣)
𝐻

= (β 𝑤,  𝑣)
𝐻

𝑣 ∈ 𝑉 𝐺

Linear map. So, this implies that , is also in . This implies𝑎(𝑤,  𝑣) = 0  ∀𝑣 ∈ 𝑉 𝑤 𝑉

and by hypothesis this means that . Therefore, is 1-1, implies𝑎(𝑤,  𝑤) = 0 𝑤 = 0 𝐼 − β 𝐺

onto, implies there exists a solution to (**) and hence to (*). Now, uniqueness is obvious

because if you have two solutions and , then𝑎(𝑢
1
,  𝑣) = (𝑓,  𝑣) 𝑎(𝑢

2
,  𝑣) = (𝑓,  𝑣)

and this implies that . And𝑎(𝑢
1

− 𝑢
2
,  𝑣) = 0    ∀𝑣 ∈ 𝑉 𝑎(𝑢

1
− 𝑢

2
,  𝑢

1
− 𝑢

2
) = 0

therefore, this implies that has to be equal to . So, you have a unique solution. Now, this𝑢
1

𝑢
2

Lax-Milgram lemma is very useful as I said in studying the existence of weak solutions to

elliptic partial differential equations and so also this one. So, the different kinds of boundary

conditions will lead to problems which can be either posed as in the Lax-Milgram framework

or in this framework. And therefore, both these results are very useful in the study of PDES.


