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We are in the middle of the proof of the Fredholm alternative, so we have shown that if is a𝑇

compact perturbation of identity then the is finite dimensional and is𝑁(𝐼 − 𝑇) 𝑅(𝐼 − 𝑇)

closed. Now, we come to the important property which is really a finite dimensional property

namely is 1-1 if and only if it is onto.𝐼 − 𝑇

This is part (c). Assume that is is injective. Assume if possible that𝑁(𝐼 − 𝑇) = {0} 𝐼 − 𝑇

. So, , we have to get a contradiction. So, is closed, implies it𝑉
1

= 𝑅(𝐼 − 𝑇) ⊂ 𝑉 𝑉
1

≠ 𝑉 𝑉
1

is a Banach space in its own right, if , then you have . So of𝑥 ∈ 𝑉 𝑇(𝑥 − 𝑇𝑥) = (𝐼 − 𝑇)𝑇𝑥 𝑇

something in is again in because this again in the , so this implies𝑉
1

𝑉
1

𝑅(𝐼 − 𝑇) 𝑇(𝑉
1
) ⊂ 𝑉

1
 

and is a Banach space, it is compact and therefore it also has closed range, therefore𝑉
1

𝐼 − 𝑇

has a closed range. Let , then will also be strictly contained in , i.e.,𝑉
2

= (𝐼 − 𝑇)𝑉
1

𝑉
2

𝑉
1

, if not , and if you assume that implies such𝑉
2

⊂ 𝑉
1

∀ 𝑥 ∈ 𝑉 (𝐼 − 𝑇)𝑥 ∈ 𝑉
1

𝑉
1

= 𝑉
2

∃ 𝑦 ∈  𝑉  



that , because , it should be the image of something, it(𝐼 − 𝑇)𝑥 = (𝐼 − 𝑇)2𝑦 (𝐼 − 𝑇)𝑥 ∈  𝑉
1

should be in , is nothing but . And then is injective implies that𝑉
2

𝑉
2

 (𝐼 − 𝑇)2𝑦 (𝐼 − 𝑇)

i.e., This is a contradiction, because we are assuming is𝑥 = (𝐼 − 𝑇)𝑦 ⇒ 𝑥 ∈  𝑉
1

𝑉 = 𝑉
1
.  𝑉

strictly bigger than , thus . So, inductively we proceed like this, and get a𝑉
1

𝑉 ⊃ 𝑉
1

⊃ 𝑉
2

sequence of closed subspaces and you have this should𝑉
𝑛

𝑉 ⊃ 𝑉
1

⊃ 𝑉
2

⊃  .  .  .  ⊃ 𝑉
𝑛

⊃  .  .  .  

not end because at any stage if it ends then you will get .𝑉
1

= 𝑉
𝑛
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So, we have . proper closed subspace of . By Riesz lemma, there𝑉
𝑛

= (𝐼 − 𝑇)𝑛 𝑉 𝑉
𝑛+1

𝑉
𝑛

exists such that and taking . Now𝑢
𝑛

∈  𝑉
𝑛

||𝑢
𝑛
|| = 1 𝑑(𝑢

𝑛
,  𝑉

𝑛+1
) ≥ 1 − ϵ = 1/2 ϵ = 1/2

, let .𝑇(𝑢
𝑚

− 𝑢
𝑛
) = (𝑢

𝑛
− 𝑇 𝑢

𝑛
) − (𝑢

𝑚
− 𝑇 𝑢

𝑚
) + (𝑢

𝑚
− 𝑢

𝑛
) 𝑛 > 𝑚



Note, (𝑢
𝑛

− 𝑇 𝑢
𝑛
) ∈ 𝑉

𝑛+1
,

, therefore .(𝑢
𝑚

− 𝑇 𝑢
𝑚

) ∈ 𝑉
𝑚+1

, 𝑉
𝑛+1

⊂ 𝑉
𝑛

⊂ 𝑉
𝑚+1

⊂ 𝑉
𝑚

(𝑢
𝑚

− 𝑢
𝑛
) ∈ 𝑉

𝑚

Therefore you can write , . If you look at where all it belongs𝑇(𝑢
𝑚

− 𝑢
𝑛
) = 𝑢

𝑚
− 𝑤 𝑤 ∈ 𝑉

𝑚+1

and these inclusions and therefore so from these two it follows that . Therefore,𝑤 ∈ 𝑉
𝑚+1

. What does this imply? is bounded as and does||𝑇𝑢
𝑚

− 𝑇𝑢
𝑛
|| ≥  1

2  {𝑢
𝑛
} ||𝑢

𝑛
|| = 1 {𝑇𝑢

𝑛
}

not have a Cauchy subsequence, which is a contradiction to the fact that is compact. And𝑇

therefore, this implies that that is . So, if it is 1-1 then it is in fact onto.𝑉
1

= 𝑉 𝑅(𝐼 − 𝑇) = 𝑉

So, now we have to claim the other one.
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Conversely let , so it is onto we have to show that it is one-one. Then𝑅(𝐼 − 𝑇) = 𝑉

. Now compact we know this implies that is compact𝑁(𝐼 − 𝑇*) = 𝑅(𝐼 − 𝑇)⊥ = 𝑉⊥ = {0} 𝑇 𝑇*

and it is 1 to 1 and therefore by earlier argument we have . And this implies that𝑅(𝐼 − 𝑇*) = 𝑉*

. So, that completes the proof of this part.𝑁(𝐼 − 𝑇) = 𝑅(𝐼 − 𝑇*)⊥ = {0}

Now, for the last part, so we want to show that and𝑑 = dim(𝑁(𝐼 − 𝑇)) 𝑑* = dim(𝑁(𝐼 − 𝑇*))

to show . Assume , so is finite dimensional implies complemented𝑑 = 𝑑* 𝑑 < 𝑑* 𝑁(𝐼 − 𝑇)

implies there exists a continuous projection . Now, is ,𝑃:  𝑉 → 𝑁(𝐼 − 𝑇) 𝑅(𝐼 − 𝑇) 𝑁(𝐼 − 𝑇*)⊥

so this implies that has finite codimension . And therefore it is complemented again𝑅(𝐼 − 𝑇) 𝑑*

we have seen these things before, so let be dimensional complement to . Now,𝑊 𝑑* 𝑅(𝐼 − 𝑇)

since (assumption) there exists a continuous linear map These are𝑑 < 𝑑* Λ : 𝑁(𝐼 − 𝑇) → 𝑊.  

both finite dimensional spaces so you can see that any linear map is continuous, which is

injective but not subjective. You cannot have a subjective map because has smaller dimension𝑊

than and therefore there you can have a map which is injective but not subjective.𝑁(𝐼 − 𝑇)
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Define . So, is a map from into itself, goes from to the null space and𝑆 = 𝑇 + Λ ◦ 𝑃 𝑇 𝑉 𝑃 𝑉 Λ

goes from null space into and therefore . And is compact and is of finite𝑊 𝑆 ∈ 𝐿(𝑉) 𝑇 Λ ◦ 𝑃

rank because its range is inside which is finite dimensional and therefore compact. Therefore,𝑊

sum of compact operators is compact, so is also compact. Let be such that . If𝑆 𝑢 𝑢 − 𝑆𝑢 = 0

you expand that , and which is the(𝑢 − 𝑇𝑢) − Λ 𝑃 𝑢 = 0 (𝑢 − 𝑇𝑢) ∈ 𝑅(𝐼 − 𝑇) Λ 𝑃 𝑢 ∈ 𝑊

complement of and therefore this is a direct sum therefore you have written the 0𝑅(𝐼 − 𝑇)

vector as a sum of one in and other in , so each of them has to be 0. This implies𝑅(𝐼 − 𝑇) 𝑊

that and . So, this implies that , so this implies that𝑢 − 𝑇𝑢 = 0 Λ 𝑃 𝑢 = 0 𝑢 ∈ 𝑁(𝐼 − 𝑇)



because is injective. And consequently, you have that𝑃 𝑢 = 𝑢 ⇒  Λ 𝑢 = 0 ⇒  𝑢 = 0 Λ 𝐼 − 𝑆

is injective, compact, so by (c ) . So, let as we know that is𝑆 𝑅(𝐼 − 𝑆) = 𝑉 𝑓 ∈ 𝑊 \ 𝑅(Λ) Λ

not subjective into and therefore you can find an which is not in . So, now it is.𝑊 𝑓 𝑅(Λ) 𝐼 − 𝑆

is onto so there exists a such that . So, once again let us write that𝑢 ∈ 𝑉 𝑢 − 𝑆𝑢 = 𝑓

. Again, and and therefore again by(𝑢 − 𝑇𝑢) − Λ 𝑃𝑢 = 𝑓 (𝑢 − 𝑇𝑢) ∈ 𝑅(𝐼 − 𝑇) Λ 𝑃𝑢 ∈ 𝑊

the direct sum decomposition you have that now this implies that and it𝑓 ∈ 𝑊 (𝑢 − 𝑇𝑢) ∈ 𝑊

also belongs to the and they are complementary spaces this implies that𝑅(𝐼 − 𝑇)

and this implies that but that is a contradiction(𝑢 − 𝑇𝑢) = 0 𝑓 =− Λ 𝑃𝑢 ⇒ 𝑓 ∈ 𝑅(Λ) 

because we have chosen not to be in the range. So, we have a contradiction all over and𝑓

therefore and that started from the fact that .𝑑 < 𝑑*
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So, this implies that . Now, similarly . Now,𝑑* ≤ 𝑑 dim(𝑁(𝐼 − 𝑇**)) ≤ dim(𝑁(𝐼 − 𝑇*)) = 𝑑*

if is the canonical embedding, then . This very trivial𝐽 :  𝑉 → 𝑉** 𝐽(𝑁(𝐼 − 𝑇)) ⊂ 𝑁(𝐼 − 𝑇**)

checking all you have to do is to find and then apply the definition of which and(𝐼 − 𝑇**) 𝐽𝑥 𝑇**

use the adjoint equation every time and then you will get that ={0}. Therefore is𝑁(𝐼 − 𝑇**) 𝐽

isometric isomorphism so the dimension of the space is precisely i.e., .𝐽(𝑁(𝐼 − 𝑇)) 𝑑 𝑑 ≤ 𝑑*

And therefore, this implies the and the theorem is completely proved.𝑑 = 𝑑*



Remark. We proved that compact, implies, one-to-one if and only if onto. But this is𝐼 − 𝑇, 𝑇

not generally true for any operator in the Hilbert space as you have already seen you take

, , then is one-to-one but not onto.𝑇𝑥 = (0,  𝑥
1
,  𝑥

2
,  .  .  .) 𝑥 = (𝑥

1
,  𝑥

2
,  .  .  .) 𝑇
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So, in finite dimensional spaces we also always have that, see in finite dimensional spaces is

difficult to talk about the null space, dimension of the null space whereas the dimension of the

range is nothing but the number of linearly independent columns and the dimension of is𝑅(𝑇*)

nothing but the number of linearly independent rows. So, you can say that the row rank is the

column rank, But then, by the rank nullity theorem we automatically get that the dimensions of

the null space also coincide. Now, in infinite dimensions it is difficult to talk about the dimension

of the range, because they are all infinite-dimensional, so there is no point in saying they are

equal, they are both infinity, so where as the null spaces are finite dimensional and that is why

we state the theorem in this fashion.

Remark: The Fredholm alternative, why do you call it an alternative? We saw Banach space𝑉 

and is compact. So, one of the alternatives holds either the equation has𝑇 ∈ 𝐿(𝑉) 𝑢 − 𝑇𝑢 = 0

only the 0 solution and so the equation has a unique solution for every , so𝑢 − 𝑇𝑢 = 𝑓 𝑓 ∈ 𝑉

this is one alternative; or has d independent solutions, then has a𝑢 − 𝑇𝑢 = 0 𝑢 − 𝑇𝑢 = 𝑓

solution if and only if it satisfies d-compatibility conditions namely . So, this is𝑓 ∈ 𝑁(𝐼 − 𝑇*)⊥

a d-dimensional space so it is being in the orthogonal means it should vanish on each one of the

basis elements here therefore it will vanish over the entire space and therefore you have the 𝑓

must be in this it should satisfy d-compatibility conditions. So, that is the reason why you have

this.
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Remark: In finite dimensions, for instance, if you have , so you havedim  𝑉 = 𝑛 𝐴:  𝑉 → 𝑉

some matrix which generates an operator, let us work with the real space for the or does not

matter what we working with. So, we want to look for solution of , to solve linear𝐴𝑥 = 𝑏 𝑛

equations in unknown, (actually you can do it even for rectangular matrices when it𝑛 𝑉 → 𝑊

does not matter, we will do it in this case). so let us assume that .𝐴* 𝑦 = 0. (𝑦,  𝑏) = 𝑦𝑇 𝑏

Then , this means that if you have a solution to , then𝑦𝑇𝐴𝑥 = (𝑦,  𝐴𝑥) = (𝐴* 𝑦,  𝑥) = 0 𝐴𝑥 = 𝑏

a necessary condition is that . , so this means that the𝑏 ∈ 𝑁(𝐴*)⊥ 𝑅(𝐴) ⊂ 𝑁(𝐴*)⊥

. So,   dim 𝑅(𝐴) ≤ dim 𝑁(𝐴*)⊥ = 𝑛 − dim  𝑁(𝐴*) = dim 𝑅(𝐴*) dim  (𝑅(𝐴)) ≤ dim  𝑅(𝐴*)

and if you apply it to , you have but, is the same as . And𝐴* dim  (𝑅(𝐴*)) ≤ dim(𝑅(𝐴**)) 𝐴** 𝐴

therefore, you have this and precisely, you have . And this is sayingdim  (𝑅(𝐴)) = dim(𝑅(𝐴*))

the row rank is the same as column rank in the real case, in the complex case it says same

column rank of the conjugate transpose, but conjugate transpose and transpose have the same

column rank and therefore its dimension, so row rank equals column rank. That is this theorem.

And also by the rank nullity theorem this shows the dim dim . And we have(𝑁(𝐴)) = (𝑁(𝐴*))

also proved because you have and both have the same dimension and therefore𝑅(𝐴) ⊆ 𝑁(𝐴*)⊥

this also implies that . So, all the theorems we proved in just two lines using𝑅(𝐴) = 𝑁(𝐴*)⊥

these arguments.
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Remark. Riesz-Fredholm Theory is the starting point of the study of Fredholm operator, so

Fredholm operator Banach spaces, is such that dim , co-dimension𝐴:  𝑉 → 𝑊 𝑁(𝐴) < ∞

, then it is called Fredholm operator and you call dim(𝑅(𝐴)) < ∞ 𝑖(𝐴) = 𝑁(𝐴) −

co-dimension is the Fredholm index. If compact perturbation of identity,(𝑅(𝐴))  𝐴 = 𝐼 − 𝑇

then it is a Fredholm operator with, 0. So, that is the theorem which we have𝑉 = 𝑊 𝑖(𝐴) =

proved. So, this is a very important concept in operator theory.


