Functional Analysis
Professor S. Kesavan
Department of Mathematics
The Institute of Mathematical Sciences
Lecture No. 66
Riesz-Fredholm Theory — Part 2
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We are in the middle of the proof of the Fredholm alternative, so we have shown that if T is a
compact perturbation of identity then the N(I — T) is finite dimensional and R(I — T) is
closed. Now, we come to the important property which is really a finite dimensional property

namely I — T is 1-1 if and only if it is onto.
This is part (c). Assume N(I — T) = {0} that is I — T is injective. Assume if possible that
V1 =R(I—-T) cV. So, V1 # V, we have to get a contradiction. So, V1 is closed, implies it

is a Banach space in its own right, if x € V, then you have T(x — Tx) = (I — T)Tx. So T of

something in V1 is again in V1 because this again in the R(I — T), so this implies T(V1) cV .
and V L is a Banach space, it is compact and therefore it also has closed range, therefore I — T
has a closed range. Let V2 = — T)V1’ then V2 will also be strictly contained in V1’ ie.,

V2 c V1’ ifnotVvx e V,(I — T)x € V1 and if you assume that V1 = V2 implies 3y € V such



that (I — T)x = (I — T)Zy, because (I — T)x € V1’ it should be the image of something, it
should be in Vz, V2 is nothing but (I — T)zy. And then (I — T) is injective implies that
x=U-T)y =>x¢€ V1 e,V = V1' This is a contradiction, because we are assuming V is
strictly bigger than V o thus V o V1 ) Vz' So, inductively we proceed like this, and get a
sequence of closed subspaces Vn and you have V O V1 D V2 D ... DV o ... thisshould

n

not end because at any stage if it ends then you will get IV .= Vn.
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So, we have Vn = — T)n V. Vm_1 proper closed subspace of Vn. By Riesz lemma, there
exists u € Vn such that ||un|| = 1 and d(un, Vn+1) >1— €=1/2 taking e = 1/2. Now

T(um—un) = (un - Tun) - (um— Tum) + (um—un),letn > m.



Note, (un -T un) € Vn+1'

(u —Tu )evV Vv cV cV cV ,therefore(u —u) €V .
m m m+ n+1 n m+1 m m n m

1'
Therefore you canwrite T(u  —u ) =u_— w, w €V _ . Ifyoulook at where all it belongs
m n m m+1

and these inclusions and therefore so from these two it follows that w € Vm+1. Therefore,

||Tum - Tun|| > % . What does this imply? {un} is bounded as ||un|| = 1 and {Tun } does

not have a Cauchy subsequence, which is a contradiction to the fact that T is compact. And

therefore, this implies that V1 = V thatis R — T) = V. So, if it is 1-1 then it is in fact onto.

So, now we have to claim the other one.
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Conversely let R(I — T) =V, so it is onto we have to show that it is one-one. Then
N(I-T *) =R(I-T )l =V = {0}. Now T compact we know this implies that T is compact
and it is 1 to 1 and therefore by earlier argument we have R(I — T*) = V. And this implies that

N(I —-T) =R — T*)l = {0}. So, that completes the proof of this part.

Now, for the last part, so we want to show that d = dim(N(/ — T)) and d = dim(N(I = T *))
to show d =d . Assume d < d*, so N(I — T) is finite dimensional implies complemented
implies there exists a continuous projection P: V. — N(I — T).Now, R(I — T)is N(I — T*)l,
so this implies that R(I — T) has finite codimension d . And therefore it is complemented again
we have seen these things before, so let W be d dimensional complement to R(I — T). Now,

since d < d (assumption) there exists a continuous linear map A: N(I — T) — W. These are
both finite dimensional spaces so you can see that any linear map is continuous, which is
injective but not subjective. You cannot have a subjective map because W has smaller dimension

than N(I — T) and therefore there you can have a map which is injective but not subjective.
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DefineS =T 4+ A ° P. So, T is amap from V into itself, P goes from V to the null space and A
goes from null space into W and therefore S € L(V). And T is compact and A ° P is of finite
rank because its range is inside W which is finite dimensional and therefore compact. Therefore,
sum of compact operators is compact, so S is also compact. Let u be such thatu — Su = 0. If
you expand that (u — Tu) — APu=0,(u — Tu) € R — T) and AP u € W which is the
complement of R(I — T) and therefore this is a direct sum therefore you have written the 0
vector as a sum of one in R(I — T) and other in W, so each of them has to be 0. This implies

that u — Tu = 0 and APu = 0. So, this implies that u € N(I — T), so this implies that



Pu =u= Au = 0= u = 0 because A is injective. And consequently, you have that [ — §
is injective, S compact, so by (c) R(I — S) = V. So, let f € W\ R(A) as we know that A is
not subjective into W and therefore you can find an f which is not in R(A). So, now itis. [ — S
is onto so there exists a u € V such that u — Su = f. So, once again let us write that
(u—=Tu) — APu = f. Again, (u — Tu) € R(I — T) and A Pu € W and therefore again by
the direct sum decomposition you have that now f € W this implies that (u — Tu) € W and it
also belongs to the R(I — T) and they are complementary spaces this implies that
(u — Tu) = 0 and this implies that f =— APu= f € R(A) but that is a contradiction

because we have chosen f not to be in the range. So, we have a contradiction all over and

therefore and that started from the fact that d < d*.
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So, this implies that d < d. Now, similarly dim(N(I = T )) < dim(N(I —= T )) = d . Now,
ifj: V- V' s the canonical embedding, then J(N(I — T)) ¢ N(I — T**) . This very trivial
checking all you have to do is to find (I — T**) Jx and then apply the definition of T which and
use the adjoint equation every time and then you will get that N(I — T**)={O}. Therefore J is
isometric isomorphism so the dimension of the space J(N(I — T)) is precisely d i.e., d < d.

And therefore, this implies the d = d* and the theorem is completely proved.



Remark. We proved that I — T, T compact, implies, one-to-one if and only if onto. But this is
not generally true for any operator in the Hilbert space as you have already seen you take

Tx = (0, X Xy o D, X = (xl, X, o .), then T is one-to-one but not onto.
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So, in finite dimensional spaces we also always have that, see in finite dimensional spaces is

difficult to talk about the null space, dimension of the null space whereas the dimension of the

range is nothing but the number of linearly independent columns and the dimension of R(T*) is
nothing but the number of linearly independent rows. So, you can say that the row rank is the
column rank, But then, by the rank nullity theorem we automatically get that the dimensions of
the null space also coincide. Now, in infinite dimensions it is difficult to talk about the dimension
of the range, because they are all infinite-dimensional, so there is no point in saying they are
equal, they are both infinity, so where as the null spaces are finite dimensional and that is why

we state the theorem in this fashion.

Remark: The Fredholm alternative, why do you call it an alternative? We saw V Banach space
and T € L(V) is compact. So, one of the alternatives holds either the equation u — Tu = 0 has
only the 0 solution and so the equation u — Tu = f has a unique solution for every f € V, so

this is one alternative; or u — Tu = 0 has d independent solutions, then u — Tu = f has a

solution if and only if it satisfies d-compatibility conditions namely f € N(I — T*)l . So, this is
a d-dimensional space so it is being in the orthogonal means it should vanish on each one of the
basis elements here therefore it will vanish over the entire space and therefore you have the f
must be in this it should satisfy d-compatibility conditions. So, that is the reason why you have

this.
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Remark: In finite dimensions, for instance, if you have dim V = n, so you have A: V -V
some matrix which generates an operator, let us work with the real space for the or does not
matter what we working with. So, we want to look for solution of Ax = b, to solve n linear

equations in n unknown, (actually you can do it even for rectangular matrices when V. — W it

does not matter, we will do it in this case). so let us assume that A y =0. (y, b) = yT b.

Then yTAx = (y, Ax) = (A* vy, x) = 0, this means that if you have a solution to Ax = b, then
a necessary condition is that b € N (A*)L. R(A) c N (A*)L, so this means that the

dim R(4) < dimN(A)" = n — dim N(4) = dimR(A ). So, dim (R(4)) < dim R(4)
and if you apply it to A*, you have dim (R(A*)) < dim(R(A**)) but, A is the same as 4. And

therefore, you have this and precisely, you have dim (R(4)) = dim(R(A4 )). And this is saying
the row rank is the same as column rank in the real case, in the complex case it says same
column rank of the conjugate transpose, but conjugate transpose and transpose have the same

column rank and therefore its dimension, so row rank equals column rank. That is this theorem.
And also by the rank nullity theorem this shows the dim(N(4)) = dim(N (A*)) And we have
also proved because you have R(A) S N (A*)L and both have the same dimension and therefore

this also implies that R(A) = N (A*)L. So, all the theorems we proved in just two lines using

these arguments.
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Remark. Riesz-Fredholm Theory is the starting point of the study of Fredholm operator, so

Fredholm operator A: V - W Banach spaces, is such that dimN(4) < oo, co-dimension

(R(A)) < oo, then it is called Fredholm operator and you call i(4A) = dimN(A4) —

co-dimension(R(A)) is the Fredholm index. If A = [ — T compact perturbation of identity,

V = W then it is a Fredholm operator with, i(A) =0. So, that is the theorem which we have

proved. So, this is a very important concept in operator theory.



