Functional Analysis Professor S. Kesavan Department of Mathematics The Institute of Mathematical Sciences Lecture No. 64 Compact operators – Part 2

We saw the limit of compact operators is compact, and since every operator with finite rank is compact, the limit of operators with a finite rank is compact. Now, the question we wanted to ask "is the limit of any compact operator of finite rank?" That is not generally true. So, but here is a situation, where it is true:

(Refer Slide Time: 01:07)

Proposition. Let V be Banach and W be a Hilbert space. Let $T \in \mathcal{K}(V, W)$ then T is the limit of operators of finite rank.

Proof: *B* closed unit ball in *V* and $K = \overline{T(B)}$ is compact. Let $\epsilon > 0$ and let $f \in W$, *I* finite indexing set, such that $K \subset \bigcup B_{n}(f, \epsilon)$. Let $G = span\{f, i \in I\}$. We do not know about its $\bigcup_{i \in I} B_{w}(f_i, \epsilon)$. Let $G = span \{f_i / i \in I\}$. linear independence, but this implies that dim (G) is finite. Let $P : W \to G$ be the orthogonal

projection. So, dim $(G) < \infty \Rightarrow G$ is closed and $P: W \rightarrow G$ is the orthogonal projection. Then $P \circ T$ is of finite rank. Because T takes V to W and P takes W to G. G is a finite dimension space therefore $P \circ T$ is of finite rank. Now, let $x \in B$ then there exists $i_0 \in I$ such that $||Tx - f_{i_0}|| \le \epsilon$. Then $||P \circ T(x) - f_{i_0}|| = ||P \circ T(x) - Pf_{i_0}||$ as $f_{i_0} \in G$, therefore $|| \leq \epsilon$. Then $|| P \circ T(x) - f_{i_0}$ $|| = || P \circ T(x) - P f_{i_0}$ \parallel as f_{i_0} $\in G$ $Pf_{i_0} = f_{i_0}$. So, P being an orthogonal projection $||P||$ is equal to 1. And therefore $= f_{i_0}$ P being an orthogonal projection $||P||$ $||P \circ Tx - f_{i}|| = ||P \circ Tx - Pf_{i}|| < \epsilon$ because $||P|| = 1$. Normally a projection will $|| = || P \circ Tx - Pf_{i_0}$ $|| < \epsilon$ because $||P|| = 1$. have norm ≥ 1 . And here we have an orthogonal projection. Therefore it is a unit. So this implies that $|| P \circ T(x) - T(x)|| < 2\epsilon \forall x \in B$ and this implies that $|| P \circ T - T|| < 2\epsilon$. So, this completes the proof.

So, we can approximate every compact operator for any given ϵ by an operator of finite rank. And therefore you have that it is the limit of operators of finite rank.

(Refer Slide Time: 05:32)

Example. Let $k \in L^2((0, 1) \times (0, 1))$. Let $f \in L^2(0, 1)$. Define $K(f)(t) =$ 0 1 $\int k(t, s)f(s) ds$ this is like a similar operator we defined in the $C(0, 1)$ now we are defining in L^2 . So, now we have 0 1 $\int |K(f)(t)|^2 dt =$ 0 1 ∫ 0 1 $\int k(t, s)f(s) ds$ | | | | | | | | 2 $dt \leq$ 0 1 ∫ 0 1 $\int_0^{\overline{f}} |k(t, s)|^2 ds \bigg|_0^{\overline{f}}$ 1 $\int_{0}^{1} |f(s)|^{2} ds dt$ $=$ $||f(s)||_2$ 2 0 1 ∫ 0 1 $\int |k(t, s)|^2 ds dt < \infty$

And this implies that $K(f) \in L^2(0, 1)$. And in fact $||K f||_2 \leq ||k||_2 ||f||_2$. Therefore $||K|| \leq ||k||_{L^2((0,1)\times(0,1))}$. So, that is the norm here. Let $\{\phi_n\}$ be an orthonormal basis for $L^2(0, 1)$. Then, you define $\phi_{ij}(t, s) = \phi_i(t) \phi_j(s)$. And then you have (we have seen this is an exercise) this implies ${\{\phi_{ij}\}}_{i,j \in N \times N}$ is an orthonormal basis for $L^2((0, 1) \times (0, 1))$. We have done this exercise already. So, we can write $k = \sum (k, \phi_{ij}) \phi_{ij}$. So, now you say, $i+j=1$ ∞ $\sum_{i=1}^{\infty} (k, \phi_{ij}) \phi_{ij}.$

$$
k_{n} = \sum_{i+j=1}^{n} (k, \phi_{ij}) \phi_{ij}.
$$
 Then $||k - k_{n}||_{L^{2}((0,1) \times (0,1))} \to 0 \text{ as } n \to \infty.$ So, now define

$$
K_{n}(f)(t) = \int_{0}^{1} k_{n}(t, s) f(s) ds = \sum_{i=1}^{n} \int_{0}^{1} \sum_{j=1}^{n} (k, \phi_{ij}) \phi_{j}(s) f(s) ds \phi_{i}(t) dt
$$

So, K_n : $L^2(0, 1) \rightarrow L^2(0, 1)$ as we have already seen and

 $||K - K_n|| \le ||k - k_n||_{L^2((0,1) \times (0,1))} \to 0 \text{ as } n \to \infty.$ $K_n f \in span{\phi_1, \dots, \phi_n}.$ This implies that K_n is of finite rank. So, K is the limit of operators of finite rank and this implies that

 K is compact and K is called a Hilbert-Schmidt operator.

(Refer Slide Time: 13:07)

$$
|k_{n} : L^{2}(p_{n}) - L^{2}(p_{n})|
$$
\n
$$
||k_{n} - k_{n}|| \leq ||k_{n} - k_{n}||_{2} \leq |a_{n} + k_{n}|_{1}) \rightarrow 0
$$
\n
$$
|k_{n} + k_{n}| \leq ||k_{n} - k_{n}||_{2} \leq |a_{n} + k_{n}|_{1}) \rightarrow 0
$$
\n
$$
|k_{n} + k_{n}| \leq |k_{n} - k_{n}||_{2} \leq |a_{n} + k_{n}||_{2} \leq |a_{n} - k_{n}||_{2} \leq |a
$$

 $|Q_{\lambda}^{(0)}| \leq \frac{1}{2} \frac{1}{2} \left| \frac{1}{2} \right|^{2} \left| \frac{1}{2} \right|^{2} \leq \frac{1}{2} \left| \frac{1}{2} \right|^{2} \leq \$ K) $(c\rho_{0}(\omega_{1})-c\rho_{0}(\omega_{2})) = (c\rho_{0} - \omega_{2})$ => I< Comp. {en} bills equicant family in C(x). => (Bcol) = cgt subsage 2 particular 250 34 , 2242 342 348 348 $\frac{1}{2}$ (a) $\left\{ 5\sigma_{0}^2$ (x) - $5\sigma_{0}^2$ (x) $\left(5\sigma_{0}^2$ => $LT_{u_{\alpha_{k}}}$ $T_{v_{\alpha_{\ell}}}$ $1 < z \Rightarrow \{T_{v_{\alpha_{\ell}}} \}$ Caucly = cont \Rightarrow τ^* con

Theorem. V, W Banach $T \in L(V, W)$. Then T is compact if and only if T^* is compact.

Proof. Let us start with T compact. We want to show that T^* is compact. So, B_V is closed unit ball in V and then $K = T(B_v)$ is compact. And then if $w \in K$ it is limit of elements of the form $T(B_v)$ and therefore $||w|| \le ||T||$. Let $\{v_n\}$ be a sequence in B_{w^*} that is the closed unit ball in W^{*}. Define $\phi_n(w) = v_n(w) = \langle v_n, w \rangle_{W^*, W}, v_n \in W^*, \forall w \in K$.

Then $|| \phi_n(w)|| \le ||v_n|| ||w||$, this is $||v_n|| \le 1$ and $||w|| \le ||T||$ $\forall w \in K$ and $\forall n$. And $|\phi_n(w_1) - \phi_n(w_2)| \le ||w_1 - w_2|| \Rightarrow K$ compact and $\{\phi_n\}$ is bounded and equi-continuous family in $C(K)$. By Ascoli there exists a convergent subsequence. So, convergent subsequence means also Cauchy, so in particular given any $\epsilon > 0$, $\exists N$ such that $k, l \ge N$ implies sup $|\phi_{n_k}(Tx) - \phi_{n_l}(Tx)| < \epsilon$, $\forall x \in B$. But what is that? That is $(T x)| < \epsilon$, $\forall x \in B$

$$
\sup\nolimits_{x\in B_{\nu}}|(v_{n_k}, Tx) - (v_{n_k}, Tx)| < \epsilon \text{ i.e. } \sup\nolimits_{x\in B_{\nu}}|(T^*v_{n_k}, x) - (T^*v_{n_k}, x)| < \epsilon
$$

 \Rightarrow $||T^* v_{n_k} - T^* v_{n_l}|| < \epsilon \Rightarrow \{T^* v_{n_k}\}\$ is Cauchy \Rightarrow convergent and therefore this tells you $- T^{\dagger} v_{n_l}$ $|| \langle \epsilon \rangle \Rightarrow {T^{\dagger} v_{n_k}}$ } is Cauchy \Rightarrow therefore for every $v_n \in T(W^*)$, there is a subsequence which such that $\{T^* v_{n_k}\}\$ is convergent. } Therefore, \overline{T}^* is compact.

(Refer Slide Time: 18:15)

Conversely, T^{*} is compact. So, this implies $T^* : V^* \to W^*$ is compact. So, then you take

$$
J_V: V \to V^{**} \text{ and } J_W: W \to W^{**} \text{ canonical embeddings. } x \in B_V, v \in W^*.
$$

$$
T^* (J_V(x)) (v) = J_V(x) T^*(v) = (T^* v)x = v (T x) = J_W(T(x)) (v).
$$

So, $T^{*}J_V(x) = J_W(T(x)) \quad \forall x \in B_V$. And therefore we have $T^{*}J_V(B_V) = J_W(T(B_V))$.

But B_v is bounded set, $J_v(B_v)$ is bounded, and T^* is compact and $J_w(T(B_v))$ is relatively compact. J_W is isometric isomorphism and therefore this implies $T(B_V)$ is relatively compact and that means T is compact and that completes the proof of this theorem.