Functional Analysis Professor S. Kesavan Department of Mathematics The Institute of Mathematical Sciences Lecture No. 64 Compact operators – Part 2

We saw the limit of compact operators is compact, and since every operator with finite rank is compact, the limit of operators with a finite rank is compact. Now, the question we wanted to ask "is the limit of any compact operator of finite rank?" That is not generally true. So, but here is a situation, where it is true:

(Refer Slide Time: 01:07)

Proposition. Let *V* be Banach and *W* be a Hilbert space. Let $T \in \mathcal{K}(V, W)$ then *T* is the limit of operators of finite rank.

Proof: B closed unit ball in V and $K = \overline{T(B)}$ is compact. Let $\epsilon > 0$ and let $f \in W$, I finite indexing set, such that $K \subset \bigcup_{i \in I} B_w(f_i, \epsilon)$. Let $G = span \{f_i / i \in I\}$. We do not know about its linear independence, but this implies that dim (G) is finite. Let $P : W \to G$ be the orthogonal

projection. So, dim $(G) < \infty \Rightarrow G$ is closed and $P: W \to G$ is the orthogonal projection. Then $P \circ T$ is of finite rank. Because T takes V to W and P takes W to G. G is a finite dimension space therefore $P \circ T$ is of finite rank. Now, let $x \in B$ then there exists $i_0 \in I$ such that $||Tx - f_{i_0}|| \le \epsilon$. Then $||P \circ T(x) - f_{i_0}|| = ||P \circ T(x) - Pf_{i_0}||$ as $f_{i_0} \in G$, therefore $Pf_{i_0} = f_{i_0}$. So, P being an orthogonal projection ||P|| is equal to 1. And therefore $||P \circ Tx - f_{i_0}|| = ||P \circ Tx - Pf_{i_0}|| < \epsilon$ because ||P|| = 1. Normally a projection will have norm ≥ 1 . And here we have an orthogonal projection. Therefore it is a unit. So this implies that $||P \circ T(x) - T(x)|| < 2\epsilon \forall x \in B$ and this implies that $||P \circ T - T|| < 2\epsilon$. So, this completes the proof.

So, we can approximate every compact operator for any given ϵ by an operator of finite rank. And therefore you have that it is the limit of operators of finite rank.

(Refer Slide Time: 05:32)

Example. Let $k \in L^2((0, 1) \times (0, 1))$. Let $f \in L^2(0, 1)$. Define $K(f)(t) = \int_0^1 k(t, s)f(s) ds$ this is like a similar operator we defined in the C(0, 1) now we are defining in L^2 . So, now we have $\int_0^1 |K(f)(t)|^2 dt = \int_0^1 \left|\int_0^1 k(t, s)f(s) ds\right|^2 dt \le \int_0^1 \left(\int_0^1 |k(t, s)|^2 ds\right) \left(\int_0^1 |f(s)|^2 ds\right) dt$

$$= ||f(s)||_{2}^{2} \int_{0}^{1} \int_{0}^{1} |k(t, s)|^{2} ds dt < \infty$$

And this implies that $K(f) \in L^2(0, 1)$. And in fact $||Kf||_2 \leq ||k||_2 ||f||_2$. Therefore $||K|| \leq ||k||_{L^2((0,1)\times(0,1))}$. So, that is the norm here. Let $\{\phi_n\}$ be an orthonormal basis for $L^2(0, 1)$. Then, you define $\phi_{ij}(t, s) = \phi_i(t) \phi_j(s)$. And then you have (we have seen this is an

exercise) this implies $\{\phi_{ij}\}_{i,j \in N \times N}$ is an orthonormal basis for $L^2((0, 1) \times (0, 1))$. We have done this exercise already. So, we can write $k = \sum_{i+j=1}^{\infty} (k, \phi_{ij}) \phi_{ij}$. So, now you say,

$$k_n = \sum_{i+j=1}^n (k, \phi_{ij}) \phi_{ij}.$$
 Then $||k - k_n||_{L^2((0,1)\times(0,1))} \to 0 \text{ as } n \to \infty.$ So, now define

$$K_n(f)(t) = \int_0^1 k_n(t, s)f(s) \, ds = \sum_{i=1}^n \int_0^1 \sum_{j=1}^n (k, \phi_{ij}) \phi_j(s) f(s) \, ds \, \phi_i(t) \, dt$$

So, $K_n: L^2(0, 1) \rightarrow L^2(0, 1)$ as we have already seen and

 $||K - K_n|| \le ||k - k_n||_{L^2((0, 1) \times (0, 1))} \to 0 \text{ as } n \to \infty.$ $K_n f \in span\{\phi_1, \dots, \phi_n\}$. This implies that K_n is of finite rank. So, K is the limit of operators of finite rank and this implies that

K is compact and K is called a Hilbert-Schmidt operator.

(Refer Slide Time: 13:07)

log (ω) | < 1, 1, 11 μω 1 < 1, 11 Η ωεκ 4. () $|q_{(\omega_1)} - q_{(\omega_2)}| \leq ||w_{(\omega_1 - \omega_2)}||$ => 12 comp. Elegy bala equicant family in C(K). =) (Acal) I cgt subsay. In particular ETO JN, L, R, N, M (P, (100) - 0, (20) <E is mp < <on the constant < < 1. mp | < TUn 2 + TUn 2 2 / < E =) III un -TV, IKE => STU, } Couly a) cop. => - Con

Theorem. V, W Banach $T \in L(V, W)$. Then T is compact if and only if T^* is compact.

Proof. Let us start with T compact. We want to show that T^* is compact. So, B_V is closed unit ball in V and then $K = \overline{T(B_V)}$ is compact. And then if $w \in K$ it is limit of elements of the form $T(B_V)$ and therefore $||w|| \le ||T||$. Let $\{v_n\}$ be a sequence in B_{W^*} that is the closed unit ball in W^* . Define $\phi_n(w) = v_n(w) = \langle v_n, w \rangle_{W^*, W}, v_n \in W^*, \forall w \in K$.

Then $|| \phi_n(w) || \leq ||v_n|| ||w||$, this is $||v_n|| \leq 1$ and $||w|| \leq ||T|| \quad \forall w \in K$ and $\forall n$. And $|\phi_n(w_1) - \phi_n(w_2)| \leq ||w_1 - w_2|| \Rightarrow K$ compact and $\{\phi_n\}$ is bounded and equi-continuous family in C(K). By Ascoli there exists a convergent subsequence. So, convergent subsequence means also Cauchy, so in particular given any $\epsilon > 0$, $\exists N$ such that $k, l \geq N$ implies $\sup |\phi_{n_k}(Tx) - \phi_{n_k}(Tx)| < \epsilon, \forall x \in B$. But what is that? That is

$$\sup_{x \in B_{v}} |(v_{n_{k}}, Tx) - (v_{n_{l}}, Tx)| < \epsilon \text{ i.e. } \sup_{x \in B_{v}} |(T^{*}v_{n_{k}}, x) - (T^{*}v_{n_{l}}, x)| < \epsilon$$

 $\Rightarrow ||T^*v_{n_k} - T^*v_{n_l}|| < \epsilon \Rightarrow \{T^*v_{n_k}\} \text{ is Cauchy} \Rightarrow \text{ convergent and therefore this tells you}$ therefore for every $v_n \in T(W^*)$, there is a subsequence which such that $\{T^*v_{n_k}\}$ is convergent. Therefore, T^* is compact.

(Refer Slide Time: 18:15)

Conversely, T^* is compact. So, this implies $T^{**} \colon V^{**} \to W^{**}$ is compact. So, then you take $J_V \colon V \to V^{**}$ and $J_W \colon W \to W^{**}$ canonical embeddings. $x \in B_V, v \in W^*$.

$$T^{**}(J_{V}(x))(v) = J_{V}(x)T^{*}(v) = (T^{*}v)x = v(Tx) = J_{W}(T(x))(v).$$

So, $T^{**}J_V(x) = J_W(T(x)) \quad \forall x \in B_V$. And therefore we have $T^{**}J_V(B_V) = J_W(T(B_V))$.

But B_V is bounded set, $J_V(B_V)$ is bounded, and T^{**} is compact and $J_W(T(B_V))$ is relatively compact. J_W is isometric isomorphism and therefore this implies $T(B_V)$ is relatively compact and that means T is compact and that completes the proof of this theorem.