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Compact operators – Part 1

We begin the last chapter of this course. We are going to study compact operators, a special class

of continuous linear operators which mimic a lot of properties of finite dimensional operators.

So, we start with the definition.
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Definition: Let and be banach spaces. Let If the dimension of the range of𝑉 𝑊 𝑇 ∈ 𝐿(𝑉,  𝑊). 𝑇

is finite. We say that is of finite rank. If the image of every bounded set in is relatively𝑇 𝑉

compact in ,  we say that is compact.𝑊 𝑇

Remark: (i) is compact if is the closed unit ball in then need not be closed𝑇 ⇒ 𝐵
𝑉

𝑉 𝑇(𝐵
𝑉

)

is compact.𝑇(𝐵
𝑉

)



(ii) Given any bounded sequence in , there exists a subsequence such that{𝑥
𝑛
} 𝑉 𝑥

𝑛
𝑘

⎰
⎱

⎱
⎰

is convergent.𝑇 𝑥
𝑛

𝑘
( )⎰

⎱
⎱
⎰

Because is in the bounded set, its image is relatively compact and in Matrix space, compact{𝑥
𝑛
}

means sequentially compact and therefore you have a convergent subsequence.

Examples. Any bounded set in a finite dimensional space is relatively compact, hence any

operator of finite rank is compact.

Because the image will go into a finite dimensional space and it is bounded, so it will be

relatively compact, if is finite dimensional, then is always compact. Because it is𝑉 𝑇:  𝑉 → 𝑊 

finite rank and therefore it is always compact.

Example. is infinite dimensional. is not compact because is not compact.𝑉 𝐼:  𝑉 →  𝑉 𝐵
𝑉
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Example. and , are banach. If any one of these is𝑇 ∈ 𝐿(𝑉,  𝑊) 𝑆 ∈  𝐿(𝑊,  𝑍) 𝑉,  𝑊,  𝑍

compact, then is compact. Because continuous linear maps take bounded sets to bounded𝑆 ◦ 𝑇

sets and compact sets to compact sets.

When you have any bounded set, then the composition will always be a relatively compact set.

So, if is compact then is not invertible. Because if it were invertible, then or𝑇 𝑇 𝑇 ◦ 𝑇−1

is the identity map. So, if one of them is compact, then the identity must be compact,𝑇−1 ◦ 𝑇

which is not true in an infinite dimensional space. So, up to now, we have been sort of not giving

very serious examples except the identity is not compact. That depends on the deep theorem.

(Refer Slide Time: 6:49)

Example. consider the inclusion map . Now, has the norm namely𝑖
^
 :  𝐶1[0,  1] → 𝐶[0,  1] 𝐶1

The usual norms make them Banach spaces. So, with these||𝑓||
1, ∞

= max {||𝑓||
∞

 ,  ||𝑓'||
∞

}.

usual norms we want to show that  the inclusion map is compact.

Now, we also have that .||𝑓||
1, ∞

≤  𝐶  ⇒ ||𝑓||
∞

≤  𝐶. ||𝑓'||
∞

≤ 𝐶

By the mean value theorem, |𝑓(𝑥) − 𝑓(𝑦)| ≤  ||𝑓'||
∞

 |𝑥 − 𝑦| ≤ 𝐶|𝑥 − 𝑦|.



Therefore, is uniformly bounded and equi-continuous and therefore by𝑓 / ||𝑓'||
∞

≤ 𝐶{ }
Ascoli’s theorem, the image is relatively compact because is a compact set and therefore[0,  1]

implies is compact. So, this is just a direct consequence of Ascoli's theorem.𝑖
^
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Example. Let , For ,𝐾 ∈ 𝐶([0,  1] × [0,  1]) 𝑘 =  sup
𝑥, 𝑦∈[0, 1]×[0, 1]

|𝐾(𝑥,  𝑦)|. 𝑓 ∈  𝐶[0,  1]

define are all continuous functions on the finite𝑇𝑓(𝑥) =
0

1

∫ 𝐾(𝑥,  𝑦) 𝑓(𝑦) 𝑑𝑦. 𝐾(𝑥,  𝑦),  𝑓(𝑦)

intervals. So, they are all integrable and you have and therefore,|𝑇𝑓(𝑥) | ≤ 𝑘 ||𝑓||
∞



. And therefore, is a continuous linear transformation of and is|| 𝑇𝑓||
∞

≤  𝑘 ||𝑓||
∞

𝑇 𝐶[0,  1] 𝑇𝑓

also continuous, you can check.

So, . You have to check that this is a continuous map. Because of uniform𝑇 :  𝐶[0,  1] →  𝐶[0,  1]

continuity of K. If , then and therefore they are all uniformly||𝑓||
∞

 ≤  𝐶 || 𝑇𝑓||
∞

≤  𝑘𝐶

bounded.

|𝑇𝑓(𝑥) − 𝑇𝑓(𝑦)| ≤  
0

1

∫ |𝐾(𝑥,  𝑡) − 𝐾(𝑦,  𝑡)| |𝑓(𝑡)| 𝑑𝑡 ≤ 𝐶 sup
𝑥, 𝑦, 𝑡∈[0, 1]×[0,1]

 |𝐾(𝑥,  𝑡) − 𝐾(𝑦,  𝑡)|.

is compact. Therefore, is uniformly continuous, given any , ,[0,  1] × [0,  1] 𝐾 ϵ > 0 ∃ δ > 0

such that .|𝑥 − 𝑦| < δ  ⇒ |𝐾(𝑥,  𝑡) − 𝐾(𝑦,  𝑡)| < ϵ

Therefore , and .|𝑇𝑓(𝑥) − 𝑇𝑓(𝑦)| < 𝐶 ϵ ∀ |𝑥 − 𝑦| <  δ    ∀||𝑓||
∞

 ≤  𝐶

And therefore, again uniformly bounded and equi continuous is compact by Ascoli. So, ⇒   𝑇

Ascoli’s theorem again tells you that is compact. 𝑇
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Example. Let be continuous and is not identically 0. 𝑎:  [0,  1] → ℝ 𝑎

Define by . So, you are just multiplying𝐴 :  𝐿2(0,  1) →   𝐿2(0,  1) 𝐴𝑓(𝑡) =  𝑎(𝑡) 𝑓(𝑡)

continuous functions. A continuous function on a compact set is bounded. So, if you are

multiplying by a bounded function and function it is again function so takes into .𝐿2 𝐿2 𝐴 𝐿2 𝐿2

Also you can check that . You have to do is𝐴 ∈ 𝐿(𝐿2(0,  1))

. So, it is also a bounded linear operator. Let||𝐴𝑓(𝑡)||2 = |𝑎(𝑡)|2|𝑓(𝑡)|2 < sup ||𝐴||2||𝑓||2

. Then such that𝑎(𝑡
0
) ≠ 0 𝑡

0
∈ (0,  1).  ∃ 𝐽 = [𝑡

0
− α,  𝑡

0
+ α] ⊂ (0,  1),

It is just a continuity condition. is non-zero so in a|𝑎(𝑡)| ≥ 1
2 |𝑎(𝑡

0
)| > 0      ∀𝑡 ∈ 𝐽. 𝑎(𝑡

0
)

small interval will also be non-zero. And we can choose the and therefore𝑎(𝑡) ϵ = 1
2 |𝑎(𝑡

0
)|

you will get this condition.

Let be an orthonormal basis for . It is also an interval, so you have a separable space so𝑓
~

𝑛
 𝐿2(𝐽)

you have an orthonormal basis. So, you know,

and𝑓
𝑛
(𝑡) = 𝑓

~
𝑛
(𝑡),   𝑖𝑓 𝑡 ∈ 𝐽 𝑓

𝑛
(𝑡) = 0,   𝑖𝑓 𝑡 ∈ [0,  1] \  𝐽 

Then .   If ,  we have||𝑓
𝑛
(𝑡)|| = 1   ∀𝑛 𝑛 ≠ 𝑚



and this integral will survive only over||𝐴(𝑓
𝑛
) − 𝐴(𝑓

𝑚
)||

2

2 =  
0

1

∫ |𝑎(𝑡)|2|𝑓
𝑛
(𝑡) − 𝑓

𝑚
(𝑡)|2  𝑑𝑡

because outside , .𝐽 𝐽 𝑓
𝑛

= 𝑓
𝑚

= 0

||𝐴(𝑓
𝑛
) − 𝐴(𝑓

𝑚
)||

2

2 =  
0

1

∫ |𝑎(𝑡)|2|𝑓
𝑛
(𝑡) − 𝑓

𝑚
(𝑡)|2  𝑑𝑡 ≥ 1

4 |𝑎(𝑡
0
)|2

𝐽
∫ |𝑓

~
𝑛
(𝑡) − 𝑓

~
𝑚

(𝑡)|2 𝑑𝑡

because an orthonormal basis.|𝑓
~

𝑛
(𝑡) − 𝑓

~
𝑚

(𝑡)|2 = 2 𝑓
~

𝑛

So, . This means that does not admit a Cauchy||𝐴(𝑓
𝑛
) − 𝐴(𝑓

𝑚
)||

2

2 ≥ 1
2 |𝑎(𝑡

0
)|2 > 0 {𝐴 𝑓

𝑛
} 

subsequence. And therefore, this implies is not compact.𝐴
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We have given a fairly good number of examples. So, now let us prove the following properties

of compact operators.

Proposition. Let and be Banach spaces. Let be the collection of all compact linear𝑉 𝑊 𝐾(𝑉,  𝑊)

operators from to then is a closed subspace of .𝑉 𝑊 𝐾(𝑉,  𝑊) 𝐿(𝑉,  𝑊)

Proof. is a subspace ( if sum of to compact of operators is again compact, scalar𝐾(𝑉,  𝑊)

multiple is again compact, therefore is a subspace). So, we have to show𝐾(𝑉,  𝑊)

So, the limit of compact operators in the𝑇
𝑛
 ∈ 𝐾(𝑉,  𝑊),      𝑇

𝑛
→ 𝑇 ⇒    𝑇 ∈ 𝐿(𝑉,  𝑊) .

operator norm is in fact, a compact operator.
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Let be a closed ball in V. To show is relatively compact in . We are in the Metric space𝐵 𝑇(𝐵) 𝑊

and therefore it is enough to show that it is totally bounded. Given . Then we can cover byϵ 𝑇(𝐵)

a finite number of balls of radius in . This is what we want to show. Now, ,ϵ 𝑊 ||𝑇
𝑛

− 𝑇|| →  0

so given such thatϵ > 0     ∃ 𝑁 ||𝑇
𝑛

− 𝑇|| <  ϵ/2 .



Given is compact, where and is a finite indexing set.𝑇
𝑛

𝑇
𝑛
(𝐵) ⊂

𝑖 ∈ 𝐼
⋃ 𝐵

𝑊
(𝑓

𝑖
,  ϵ/2) 𝑓

𝑖
∈ 𝑊 𝐼

Now, and therefore this implies that (this is||𝑇
𝑛

− 𝑇|| < ϵ/2 𝑇(𝐵) ⊂
𝑖 ∈ 𝐼
⋃ 𝐵

𝑊
(𝑓

𝑖
,  ϵ/2)

immediate to check). And therefore, this implies that is compact.𝑇

Corollary: let be compact and of finite rank. Let in . Then is𝑇
𝑛

∈ 𝐿(𝑉,  𝑊)  𝑇
𝑛

→ 𝑇 𝐿(𝑉,  𝑊)   𝑇

compact. So, that means because any mapping of finite rank is compact. And now the limit of

compact operators is compact, that is what we have already seen. So, the limit of operators of

finite rank is always a compact operator. And an interesting question is the converse proof i.e.

can every compact operator be approximated by operators of finite rank? It is not always true,

but we did see cases where it is true then we will also do some exercises in this connection and

we continue with this.


