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Before we continue with the exercises is a small correction. Exercise 7c. We showed that

for all and this sinceα||𝑢 − 𝑤||2 ≤ 𝑎(𝑢 − 𝑤,  𝑢 − 𝑣) + 𝑎(𝑢 − 𝑤,  𝑣 − 𝑤) 𝑣 ∈ 𝑊

. So, and 𝑣 − 𝑤 ∈ 𝑊,  𝑎(𝑢 − 𝑤,  𝑣 − 𝑤) = 0 α||𝑢 − 𝑤||2 ≤ 𝑀||𝑢 − 𝑤|| ||𝑢 − 𝑣||

therefore, you get that ||𝑢 − 𝑤|| ≤ 𝑀
α inf

𝑣∈𝑊
||𝑢 − 𝑣|| .

12. (a) Hilbert space and . Let be an eigenvalue of with𝐻 𝑆,  𝑇 ∈  𝐿(𝐻) λ ≠ 0 𝑆𝑇

eigenvector Show that is an eigenvector of for eigenvalue .𝑢. 𝑇𝑢 𝑇𝑆 λ

Solution. You have , , and obviously . So, this implies𝑆 𝑇 𝑢 = 𝑆(𝑇𝑢) = λ 𝑢 λ ≠ 0 𝑢 ≠ 0

that cannot be 0. So, . Now, . Therefore,𝑇𝑢 𝑇𝑢 ≠ 0 𝑇𝑆(𝑇𝑢) = 𝑇(𝑆𝑇𝑢) = 𝑇(λ𝑢) = λ𝑇(𝑢)

is an eigenvector of for eigenvalue . So, that is a very trivial statement.𝑇𝑢 𝑇𝑆 λ
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(b) Non-zero eigenvalues of and are the same and .𝑆𝑇 𝑇𝑆 𝑇(𝑁(𝑆𝑇 − λ𝐼)) = 𝑁(𝑇𝑆 − λ𝐼)

Solution. By (a) we can also show eigenvalue of eigenvalue of . So, that isλ ≠ 0 𝑇𝑆 ⇒ λ 𝑆𝑇

the same thing as T and S is no nothing sacred about that. By (a) again if is an eigenvector𝑢

of ,  then is eigenvector of and therefore, we have𝑆𝑇 𝑇 𝑢 𝑇𝑆

. Now we have to show the converse. ,𝑇 (𝑁(𝑆𝑇 −  λ 𝐼)) ⊂ 𝑁(𝑇𝑆 − λ𝐼) 𝑢 ∈ 𝑁(𝑇𝑆 − λ𝐼)

we have . Now it is enough to show is an eigenvector of𝑇𝑆 𝑢 = λ 𝑢 ⇒ 𝑢 = 𝑇( 𝑆 𝑢
λ  ) 𝑆 𝑢

λ 𝑆𝑇
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So, we have to show the , that completes the proof. Therefore,𝑆𝑇 𝑆 𝑢
λ( ) = 𝑆 𝑇 𝑆 𝑢

λ( ) =  𝑆𝑢

we have shown . So, we have shown that all the𝑁(𝑇𝑆 − λ𝐼) ⊂ 𝑇 (𝑁(𝑆𝑇 −  λ 𝐼))

non-zero eigenvalues of and are the same.𝑇𝑆 𝑆𝑇
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Remark 1: nothing can be said about in infinite dimensions. For instance you takeλ =  0

and , and . So, both of𝐻 = 𝑙
2

𝑇𝑥 = (0,  𝑥
1
,  𝑥

2
,.  .  .) 𝑥 = (𝑥

1
,  𝑥

2
,.  .  .) 𝑇𝑥 = ( 𝑥

2
,  𝑥

3
,.  .  .)

them are bounded linear operators. If you take , then , so, is an eigenvector for𝑒
1

𝑆 𝑒
1

= 0 𝑒
1

for ,  because this also impliesλ =  0 𝑇𝑆 𝑇𝑆𝑒
1

= 0.

On the other hand if you take , this is the identity map,  implies not an eigenvalue.𝑆𝑇 λ =  0
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In finite dimensions we have eigenvalues of and coincide. We have already shown for𝑆𝑇 𝑇𝑆

lambda naught you know already shown. So, if 0 is an eigenvalue of , means,𝑆𝑇

is also singular, because its determinant is also 0 impliesdet 𝑆𝑇 =  det  𝑆 det  𝑇 = 0 ⇒  𝑇𝑆

is an eigenvalue of . In the finite dimensional case in fact you can show theλ =  0 𝑇𝑆

characteristic polynomials are in fact the same. Now, so that you might have done in linear

algebra.

13. , Hilbert space, , such that𝐻 𝑎(.  ,  .):  𝐻 × 𝐻 →  ℂ

and𝑎(α 𝑢 + β 𝑣,  𝑧) = α 𝑎(𝑢,  𝑧) + β 𝑎(𝑣,  𝑧) ∀ 𝑢,  𝑣,  𝑧 ∈ 𝐻 ∀ α,  β ∈ ℂ

that is linear in the first variable. Then and . This is almost𝑎(𝑢,  𝑣) = 𝑎(𝑢,  𝑣),  𝑎(𝑢,  𝑢) ≥ 0

looking like an inner product except that the third condition is a bit weak.
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It does not say that this is a norm in fact, may not mean that . But even𝑎(𝑢,  𝑢) = 0 𝑢 = 0

then you have the analogue of the Cauchy Schwarz inequality, i.e.,

, the square root is well defined for all . So, this|𝑎(𝑢,  𝑣)| ≤  𝑎(𝑢,  𝑢) 𝑎(𝑣,  𝑣) ∀ 𝑢,  𝑣 ∈ 𝐻

proof is identical as in the Cauchy Schwarz inequality.

Solution. You have and then take , , and . 𝑢,  𝑣 ∈ 𝐻 α ∈ ℂ |α| = 1 α 𝑎(𝑢,  𝑣) = |𝑎(𝑣,  𝑣)|

Let . So, you have by the third property𝑡 ∈ ℝ 0 ≤ 𝑎(α𝑢 − 𝑡𝑣,  α𝑢 − 𝑡𝑣)

=  𝑎(𝑢,  𝑢) − 𝑡 𝑎(α 𝑢,  𝑣) − 𝑡 𝑎(𝑣,  α𝑢) + 𝑡2 𝑎(𝑣,  𝑣)

Now, by the second property .  Therefore,𝑎(α 𝑢,  𝑣) = 𝑎(𝑣,  α𝑢)

𝑎(𝑢,  𝑢) − 𝑡 𝑎(α 𝑢,  𝑣) − 𝑡 𝑎(𝑣,  α𝑢) + 𝑡2 𝑎(𝑣,  𝑣) = 𝑎(𝑢,  𝑢) − 2𝑡 𝑅𝑒 𝑎(α 𝑢,  𝑣) + 𝑡2 𝑎(𝑣,  𝑣)

=  𝑎(𝑢,  𝑢) − 2𝑡 |𝑎(𝑣,  𝑣)| + 𝑡2 𝑎(𝑣,  𝑣)



And now, you have a quadratic form which is never changed a sign that means the roots of

the quadratic should either coincident or imaginary and therefore,

.4 |𝑎(𝑣,  𝑣)|2 ≤  4 𝑎(𝑢,  𝑢) 𝑎(𝑣,  𝑣)
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For the Cauchy Schwarz inequality, you do not need the full power of the inner product.

14. , Hilbert space, , self-adjoint. Then .𝐻 𝐴 ∈  𝐿(𝐻) sup
||𝑥||=1

|(𝐴𝑥,  𝑥)| = ||𝐴||

So, you have one more formula for the norm.

Solution. Let ,  if , then𝑀 =  sup
||𝑥||=1

|(𝐴𝑥,  𝑥)| ||𝑥|| = 1 |(𝐴𝑥,  𝑥)| ≤ ||𝐴|| ||𝑥||2 = ||𝐴||.

Therefore, you have that . Now, let be arbitrary. So, let us compute𝑀 ≤ ||𝐴|| 𝑥,  𝑦 ∈ 𝐻

. Now, what is ?𝐴(𝑥 + 𝑦),  𝑥 + 𝑦( ) = (𝐴𝑥,  𝑥) + (𝐴𝑥,  𝑦) +  (𝐴𝑦,  𝑥) + (𝐴𝑦,  𝑦)  (𝐴𝑦,  𝑥)

. And therefore, (𝐴𝑦,  𝑥) = (𝑦,  𝐴*𝑥) = (𝑦,  𝐴𝑥) = (𝐴𝑥,  𝑦)

𝐴(𝑥 + 𝑦),  𝑥 + 𝑦( ) = (𝐴𝑥,  𝑥) + (𝐴𝑥,  𝑦) + (𝐴𝑥,  𝑦) + (𝐴𝑦,  𝑦)

.= (𝐴𝑥,  𝑥) + 2 𝑅𝑒(𝐴𝑥,  𝑦) + (𝐴𝑦,  𝑦)

Similarly, 𝐴(𝑥 − 𝑦),  𝑥 − 𝑦( ) = (𝐴𝑥,  𝑥) − 2 𝑅𝑒(𝐴𝑥,  𝑦) + (𝐴𝑦,  𝑦)



So, when you subtract, you get .4 𝑅𝑒(𝐴𝑥,  𝑦) = 𝐴(𝑥 + 𝑦),  𝑥 + 𝑦( ) − 𝐴(𝑥 − 𝑦),  𝑥 − 𝑦( )
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4 𝑅𝑒(𝐴𝑥,  𝑦) = 𝐴(𝑥 + 𝑦),  𝑥 + 𝑦( ) − 𝐴(𝑥 − 𝑦),  𝑥 − 𝑦( )

this is the parallelogram  ≤  4 𝑀 ||𝑥+𝑦||2

4 +  ||𝑥−𝑦||2

4
⎡⎢⎣

⎤⎥⎦
= 2 𝑀 ||𝑥||2 + ||𝑦||2[ ]

law. Now, you take , and use instead of above.|α| = 1 α (𝐴𝑥,  𝑦) = |𝐴(𝑥,  𝑦)|   α𝑥  𝑥

So, you get . set . If , there|(𝐴𝑥,  𝑦)| ≤ 𝑀
2 ||𝑥||2 + ||𝑦||2[ ] 𝐴𝑥 ≠ 0, 𝑦 = ||𝑥||

||𝐴𝑥||  𝐴𝑥 𝐴𝑥 = 0

is nothing for us to do, because we are looking at the maximum value of . Using(𝐴𝑥,  𝑥)

in the above inequality,𝑦 = ||𝑥||
||𝐴𝑥||  𝐴𝑥

.||𝑥|| ||𝐴𝑥|| ≤ 𝑀
2 ||𝑥||2 + ||𝑥||2[ ] = 𝑀 ||𝑥||2 ⇒ ||𝐴𝑥|| ≤ 𝑀 ||𝑥|| ⇒ ||𝐴|| ≤ 𝑀 

(Refer Slide Time: 18:13)



We already saw that and therefore, we have So, that proves.𝑀 ≤ ||𝐴|| 𝑀 = ||𝐴||
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15. , Hilbert space, , self-adjoint. We already know that the spectrum is𝐻 𝐴 ∈  𝐿(𝐻)

contained in the real line. Now, we are going to give some more precise information.

, and .𝑚 =  inf
||𝑥||=1

(𝐴𝑥,  𝑥) 𝑀 =  sup
||𝑥||=1

|(𝐴𝑥,  𝑥)|

Then and .σ(𝐴) ⊂ [𝑚,  𝑀] 𝑚,  𝑀 ∈ σ(𝐴)

So, we have a more precise characterization of the spectrum of a self-adjoint operator.

Solution. Let . So,λ >  𝑀 ((λ𝐼 − 𝐴)𝑥,  𝑥) = λ||𝑥||2 − (𝐴𝑥,  𝑥) ≥ (λ − 𝑀)||𝑥||2

and . Now if you apply Cauchy Schwarz on the left-hand side, so, you will(λ − 𝑀) >  0

get This is a familiar thing we have used many times in(λ − 𝑀)||𝑥|| ≤ ||(λ𝐼 − 𝐴)𝑥|| .

the theorem.

Lemma: and has closed range and 1-1, therefore, you have that(λ𝐼 − 𝐴)* =  (λ𝐼 − 𝐴)

is invertible. Therefore, .(λ𝐼 − 𝐴) λ ∈ ρ(𝐴)
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Similarly, for you can do the same argument and you will get .λ <  𝑚 λ <  𝑚 ⇒ λ ∈ ρ(𝐴)

Therefore, this implies that .σ(𝐴) ⊂ [𝑚,  𝑀]
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Now, you consider the bi linear form .𝑎(𝑢,  𝑣) = (𝑀 𝑢 − 𝐴𝑢,  𝑣) = 𝑀(𝑢, 𝑣) − (𝐴𝑢,  𝑣)

(𝐴𝑢,  𝑣) = (𝑢,  𝐴*𝑣) = (𝑢,  𝐴𝑣).

Thus, .𝑎(𝑢,  𝑣) = (𝑀 𝑢 − 𝐴𝑢,  𝑣) = 𝑀(𝑢, 𝑣) − (𝑢,  𝐴𝑣) = (𝑢,  𝑀𝑣 − 𝐴𝑣) = 𝑎(𝑢,  𝑣) 

We have this and of course, linear in the first variable that is obvious.



(Refer Slide Time: 23:07)

Therefore, by (exercise 13) we have the Cauchy Schwarz inequality.

.|(𝑀𝑢 − 𝐴𝑢,  𝑣)| ≤ (𝑀𝑢 − 𝐴𝑢,  𝑢)1/2 (𝑀𝑣 − 𝐴𝑣,  𝑣)1/2

.≤  ||𝑀 𝐼 − 𝐴||1/2 ||𝑣|| (𝑀𝑢 − 𝐴𝑢,  𝑢)1/2

Therefore, from this you get .||𝑀𝑢 − 𝐴𝑢|| ≤  ||𝑀 𝐼 − 𝐴||1/2 (𝑀𝑢 − 𝐴𝑢,  𝑢)1/2

Now, you choose , , this is supremum so, you can𝑢
𝑛 

∈ 𝐻 ||𝑢
𝑛
|| = 1 (𝐴𝑢

𝑛
,  𝑢

𝑛
) →  𝑀

always find such a sequence. So, if you apply that you get

||𝑀𝑢
𝑛

− 𝐴𝑢
𝑛
|| ≤  ||𝑀 𝐼 − 𝐴||1/2 (𝑀𝑢

𝑛
− 𝐴𝑢

𝑛
,  𝑢

𝑛
)1/2 →  0

So, if were invertible can be written as . I am𝑀 𝐼 − 𝐴 𝑢
𝑛

𝑢
𝑛

= (𝑀 𝐼 − 𝐴)−1(𝑀𝑢
𝑛

− 𝐴𝑢
𝑛
)

just applying the operator and its inverse. So, I get back the identity. This implies that 𝑢
𝑛

→ 0

, but . So, we have a contradiction.||𝑢
𝑛
|| = 1

(Refer Slide Time: 25:28)



And therefore, this implies that is not invertible𝑀 𝐼 − 𝐴 ⇒  𝑀 ∈ σ(𝐴).

Similarly, you can show . So, that proves this thing. 𝑚 ∈ σ(𝐴)

Remark Combining exercise 13, 14 and 15 we have that if , self-adjoint,𝐴 ∈  𝐿(𝐻)

then either or .||𝐴|| − ||𝐴|| ∈  σ(𝐴)

Because either , or . We do not know how the thing behaves, and||𝐴|| = 𝑀 − ||𝐴|| = 𝑚

therefore, one of them definitely has to be there,  because 𝑀 = sup |(𝐴𝑢,  𝑢)|

So, you will get either or when you remove the modulus and therefore, you get one of𝑚 𝑀

them has to be in . so, we will wind up this chapter. And we will take up another topic next.σ


