Functional Analysis
Professor S. Kesavan
Department of Mathematics
The Institute of Mathematical Sciences
Lecture No. 61

Exercises — Part 2
(Refer Slide Time: 00:22)
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We continue with the exercises. We are at number 8.



8. Let (a,b) Cc R, let {(1)71}OO be an orthonormal basis for Lz(a, b). Recall that L% is a
n=1

separable  space therefore, it has a countable orthonormal basis. Then

(])n‘m(s, t) = cl)n(s) cl)m(t) gives an orthonormal basis for LZ((a, b) x (a, b)).

bb
Solution: Let f € L*((a, b) X (a, b)) then we have, [ [ [f(s, £)|°ds dt < oo

aa

b b
By Fubini’s theorem, for a. e. t, [ |f(s, t)|2ds <+ o, a.e.s, [ |f(s, t)|2dt <+ oo.

a a

Sa.et,so f(s,t) € L(a b) (*)

and similarly a.e.s, t o f(s,t) € L°(a b) (**)

This is just a direct application of Fubini’s theorem.

: 2
Let us consider | |d | dsdt
(@b)x(ab) "

Since the functions are variables separable, this just breaks up into two integrals as follows

b b
[ o, lfdsdt = [|o &) ds [l O dt =1

(a,b)x(a,b)

Now, let us consider the orthogonality,

b b
[ ¢, dsdt = {‘Pi(s) ¢, (5)ds f b0 ¢ 0dt =85,

(a,b)x(a,b)

where 6pq =1, if p = qand 8pq =0, ifp # q. 8pq is kronecker symbol.

Therefore, unless i = j, k = [ this will always be 0. Even if one of the two indices is

different this will be equal to 0 and therefore, this shows that {q>i j}oo is an orthonormal set.
T j=1
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So, now, we have to show that it is complete. Let f € Lz((a, b) X (a, b)) such that

1] f(st)cl) (s t)ydsdt = 0 Vi, j.
(a,b)x(ab)

Then we have to show f = 0, a. e. Of course, that means it is 0 in the two sets. Let us take

b b b b
[1]f(st) o @® dt|>ds < [([ If(s, ) dt f b0 ’dt)ds [by the Cauchy Schwarz

inequality]



bb b
< [[IfGs, t)Izdt ds <+ 00.[f|d)i(t)|2dt = 1, because it is an
aa a

orthonormal sequence basis]
b 2
=>se [ f(st) d(t) dt € L'(a,b)
a
So, we have shown that the integral is an Lz(a, b). So, now we have

b b
0= [ fsom b (s)dtds = JU f(st) b6 dt) ¢.(s) ds Vi j.

(a,b)x(ab) a a
Now we can apply Fubini’s because modulus is only integrable and therefore, there is no

b
problem at all. Now, [ f(s,t) q)i(t) dt is given to be an L? function and its inner product

a

b
with every d)j is 0. So, this implies that [ f(s,t) d)i(t) dt = 0, Vi and this implies that
a

f(s,t) = 0 a. e.once again because s (s,t) f(s,t) € L’ So, from statements (*) and
(**) you get that that f(s, t) has to be 0 almost everywhere. So, this implies that f = 0 and
therefore, we have a complete orthonormal basis.

(Refer Slide Time: 09:58)
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Remark we saw that {+ /% sin nt}nEN is an orthonormal basis for L (0, ). So, we have



{% sin nt sin ms}nmEN is an orthonormal basis for LZ((O, m) X (0, m)).

9. Show that E = [%]U {1 /% cos nt} is an orthonormal basis for LZ(O, ).
T

n=1

Proof. Take f L FE that means, f is orthogonal every member of the set E. Now, extend f as

an even functions to (— m, ). So, for t > 0, you have f(— t) = f(t). So, that is what you

: . 2
define, then you have this extension f € L (— m, m).
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So, if you now take. So, you are given that %ff dt = 0and [ f(t) cos ntdt = 0, and
o 0

T T
this implies that [ fdt = 2[ fdt = 0 and similarly,

—T 0

T T
[ f(t) cosntdt =2 f(t) cosntdt = 0 because both are even functions.

-1 0

T

[ f(t) sinntdt = 0 as f(t) is even and sinnt is odd. So, the product is odd and

—T

therefore, the integral is 0. So, a, a, bn are all 0 V n and therefore, you have f = 0 on
[— m, m] almost everywhere, of course, this implies f = 0 on [0, ] almost everywhere and

therefore, f is 0 element of L2, consequently, E = {%}U {« /% cos nt} is a complete
T

n=1

orthonormal basis. So, you can write a Fourier series corresponding to this you can expand

2 . : : :
any L function in [0, ] in terms of the constant and the cosines and that is called the

Fourier Cosine series. This test we had the Fourier sine series.
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10.Letf, g € LZ(— T, m), and f(t) = % + (an cosnt + bn sin nt) and
n=1

git) = % + ) (cn cosnt + dn sin nt). Then show that
n=1
1 P % % N
T_fﬂfg dt = —0* + El(a"cn +b d).

a

Solution Take f = —-+

N
: 2
nZ::l(an cosnt + bn sin nt), fN - fin L (— m m).

N
gy=> 1 > (cn cosnt + dn sinnt), gy 9 in LZ(— T, ).
n=1
T N m
[ dt = —22 i 2 b d sin’nt)d
fngn t = — 2t + % (ancn cos nt +b d sin nt)dt
—T n=1-m
T
[ [ cosnt sinnt = 0]
—Tt
N w

020 T+ Z J‘ (ancn(1+co;2nt) +bndn (1—c0252nt))dt

n=1-m



= T

a c N
0 0
— + » (ancn + bndn)]

n=1

And now, you let N — oo. So, on both sides here you will get

T [ole]
[ fgdt = =n [% + ) (an c + bn dn) ] So, that will prove the theorem that will give
—T n=1

you the solution.
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11. so find the Fourier series for f(t) = t and for f(t) = | t|. Use them to evaluate

(2) = T andi(®) =

n

1
4 -
17’1

T s

Solution. So, f(t) = tis an odd function on [— T, m].

So, this means that all the a = 0 and bn = %f t sinntdt

—T

and you do an integration by parts, which will  give  you

T

_ 1 . _ 2 . n+1

bn—ﬂftsmntdt— —(-1 .
—T

2
a

[0e]

3 2

T [e]
1 2 2 2 2 1
Now, —[t'dt = -+ X(a +b) =+ =435 =2 ="
-T n=1 n=1
Now,f(t) = | t| is an even function on [— T, m]. and therefore bn = 0. Therefore,
17 2 7 2
= = = = = £ T _
ao—nf|t|dt—n{tdt— ~ — =
—T
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4
C?
L,J
g
J,;Iflllf&!"‘
‘*'fhmﬂ"

NPTEL

o an o cu et Slas T wd gl«x:éf;, @

SK g«UC\ = dd &m\ =T =3 GRE0-
| S me&;\'\}ck = i(—l\w (l_bl.awlb\\

2 =~ [(— 1)n — 1] (integration by parts). So, you can check this

t cosntdt =

Q
Il
o ~—A

calculation. This is a routine calculation. So, you have a = 0, if n is even

4 ...
a = — —5,ifnisodd.
n nm



So, only the odd an’s are surviving all the even an’s are 0.

T 2 (o] [o%]
1 2 2 2 a, 2 n 1 1
So, —[ |t|"dt = < = + a” ==+ Y ——
‘l'[_f’r[I | 3 2 n§1 n 2 th n§1 (21’1—1)4
w_ 1 _ R -
> nz::1 en-1* 1613 2T T o
1 1 1
Now, = — ) —
ngl (2n)4 16 n§1 n4
() = N A=)+ B o guy = ISy =L
- 2ot 16 96 16 - 9% 90

So, that is how you compute. In fact, all the even powers can be computed. All the even zeta

values can be computed and you know the Riemann zeta function is very important.

And it is not known for the odd powers we do not know very much. In fact, the big result is,
was proved sometime in the 1990s that {(3) is a rational number. So, this is was proved, but
we do not know anything about {(n) for n odd, the even once can be all computed in using
Fourier series in terms of what are called the Bernoulli numbers. So, we will continue the

exercises again.



