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We continue with the exercises. We are at number 8.



8. Let let be an orthonormal basis for . Recall that is a(𝑎, 𝑏) ⊂ ℝ,  {ϕ
𝑛
}

𝑛=1

∞ 𝐿2(𝑎, 𝑏) 𝐿2

separable space therefore, it has a countable orthonormal basis. Then

gives an orthonormal basis for .ϕ
𝑛,𝑚

(𝑠, 𝑡) = ϕ
𝑛
(𝑠) ϕ

𝑚
(𝑡) 𝐿2((𝑎, 𝑏) × (𝑎, 𝑏))

Solution: Let then we have,𝑓 ∈ 𝐿2((𝑎, 𝑏) × (𝑎, 𝑏))
𝑎

𝑏

∫
𝑎

𝑏

∫ 𝑓(𝑠, 𝑡)| |2𝑑𝑠 𝑑𝑡 < ∞

By Fubini’s theorem, for a. e. a. e. .𝑡,
𝑎

𝑏

∫ 𝑓(𝑠, 𝑡)| |2𝑑𝑠 <+ ∞, 𝑠,
𝑎

𝑏

∫ 𝑓(𝑠, 𝑡)| |2𝑑𝑡 <+ ∞

a. e. , -------------------(*)⇒ 𝑡 𝑠 ↦ 𝑓(𝑠, 𝑡) ∈  𝐿2(𝑎, 𝑏)

and similarly  a. e. , ------------------------(**)𝑠 𝑡 ↦ 𝑓(𝑠, 𝑡) ∈  𝐿2(𝑎, 𝑏)

This is just a direct application of Fubini’s theorem.

Let us consider
(𝑎,𝑏)×(𝑎,𝑏)

∫ |ϕ
𝑛,𝑚

|2𝑑𝑠 𝑑𝑡

Since the functions are variables separable, this just breaks up into two integrals as follows

(𝑎,𝑏)×(𝑎,𝑏)
∫ |ϕ

𝑛,𝑚
|2𝑑𝑠 𝑑𝑡 =  

𝑎

𝑏

∫ |ϕ
𝑛
(𝑠)|2𝑑𝑠  

𝑎

𝑏

∫ |ϕ
𝑛
(𝑡)|2𝑑𝑡 = 1

Now, let us consider the orthogonality,

,
(𝑎,𝑏)×(𝑎,𝑏)

∫ ϕ
𝑖,𝑗 

ϕ
𝑘,𝑙

 𝑑𝑠 𝑑𝑡 =  
𝑎

𝑏

∫ ϕ
𝑖
(𝑠) ϕ

𝑘
(𝑠)𝑑𝑠  

𝑎

𝑏

∫ ϕ
𝑗
(𝑡) ϕ

𝑙
(𝑡)𝑑𝑡 = δ

𝑖𝑘
δ

𝑗𝑙

where and is kronecker symbol.δ
𝑝𝑞

= 1,  𝑖𝑓 𝑝 = 𝑞 δ
𝑝𝑞

= 0,  𝑖𝑓 𝑝 ≠ 𝑞. δ
𝑝𝑞

Therefore, unless this will always be 0. Even if one of the two indices is𝑖 = 𝑗,  𝑘 = 𝑙

different this will be equal to 0 and therefore, this shows that is an orthonormal set.{ϕ
𝑖, 𝑗

}
𝑖, 𝑗=1

∞



So, now, we have to show that it is complete. Let such that𝑓 ∈ 𝐿2((𝑎, 𝑏) × (𝑎, 𝑏))

(𝑎,𝑏)×(𝑎,𝑏)
∫ 𝑓(𝑠, 𝑡) ϕ

𝑖, 𝑗
(𝑠,  𝑡) 𝑑𝑠 𝑑𝑡 = 0   ∀𝑖,  𝑗.

Then we have to show Of course, that means it is 0 in the two sets. Let us take𝑓 = 0,  𝑎.  𝑒.

[by the Cauchy Schwarz
𝑎

𝑏

∫ |
𝑎

𝑏

∫ 𝑓(𝑠, 𝑡) ϕ
𝑖
(𝑡) 𝑑𝑡|2 𝑑𝑠 ≤

𝑎

𝑏

∫(
𝑎

𝑏

∫ |𝑓(𝑠, 𝑡)|2𝑑𝑡
𝑎

𝑏

∫ |ϕ
𝑖
(𝑡)|2𝑑𝑡)𝑑𝑠

inequality]



[ , because it is an≤
𝑎

𝑏

∫
𝑎

𝑏

∫ |𝑓(𝑠, 𝑡)|2𝑑𝑡 𝑑𝑠 <+ ∞.
𝑎

𝑏

∫ |ϕ
𝑖
(𝑡)|2𝑑𝑡 = 1

orthonormal   sequence basis]

⇒ 𝑠 ↦ 
𝑎

𝑏

∫ 𝑓(𝑠, 𝑡) ϕ
𝑖
(𝑡) 𝑑𝑡 ∈  𝐿2(𝑎, 𝑏)

So, we have shown that the integral is an . So, now we have𝐿2(𝑎, 𝑏)

0 =
(𝑎,𝑏)×(𝑎,𝑏)

∫ 𝑓(𝑠, 𝑡) ϕ
𝑖
(𝑡) ϕ

𝑗
(𝑠) 𝑑𝑡 𝑑𝑠 =

𝑎

𝑏

∫(
𝑎

𝑏

∫ 𝑓(𝑠, 𝑡) ϕ
𝑖
(𝑡) 𝑑𝑡 ) ϕ

𝑗
(𝑠) 𝑑𝑠  ∀𝑖,  𝑗.

Now we can apply Fubini’s because modulus is only integrable and therefore, there is no

problem at all. Now, is given to be an function and its inner product
𝑎

𝑏

∫ 𝑓(𝑠, 𝑡) ϕ
𝑖
(𝑡) 𝑑𝑡 𝐿2

with every is 0. So, this implies that and this implies that ϕ
𝑗

𝑎

𝑏

∫ 𝑓(𝑠, 𝑡) ϕ
𝑖
(𝑡) 𝑑𝑡 = 0,  ∀ 𝑖

once again because . So, from statements (*) and𝑓(𝑠, 𝑡) = 0  𝑎.  𝑒. 𝑠 ↦ (𝑠, 𝑡) 𝑓(𝑠, 𝑡) ∈  𝐿2

(**) you get that that has to be 0 almost everywhere. So, this implies that and𝑓(𝑠, 𝑡) 𝑓 = 0

therefore, we have a complete orthonormal basis.

(Refer Slide Time: 09:58)

Remark we saw that is an orthonormal basis for So, we have{ 2
π  sin  𝑛𝑡}

𝑛∈ℕ
𝐿2(0,  π).  



{ is an orthonormal basis for .2
π  sin  𝑛𝑡 sin  𝑚𝑠}

𝑛,𝑚∈ℕ
𝐿2((0,  π) × (0,  π))

9. Show that is an orthonormal basis for𝐸 = 1
π{ }⋃ 2

π   cos 𝑛𝑡
⎰
⎱

⎱
⎰

𝑛=1

∞

𝐿2(0,  π).  

Proof. Take that means, is orthogonal every member of the set Now, extend as𝑓 ⊥  𝐸 𝑓 𝐸. 𝑓

an even functions to . So, for you have So, that is what you(− π,  π)   𝑡 > 0, 𝑓(− 𝑡) = 𝑓(𝑡).

define, then you have this extension 𝑓 ∈  𝐿2(− π,  π).
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So, if you now take. So, you are given that and , and1
π 0

π

∫ 𝑓 𝑑𝑡 = 0
0

π

∫ 𝑓(𝑡) cos  𝑛𝑡 𝑑𝑡 = 0

this implies that and similarly,
−π

π

∫ 𝑓 𝑑𝑡 =  2
0

π

∫ 𝑓 𝑑𝑡 = 0

because both are even functions.
−π

π

∫ 𝑓(𝑡) cos 𝑛𝑡 𝑑𝑡 =2
0

π

∫ 𝑓(𝑡) cos 𝑛𝑡 𝑑𝑡 = 0

as is even and is odd. So, the product is odd and
−π

π

∫ 𝑓(𝑡) sin 𝑛𝑡 𝑑𝑡 = 0 𝑓(𝑡) 𝑠𝑖𝑛 𝑛𝑡

therefore, the integral is 0. So, are all 0 and therefore, you have on𝑎
0
,   𝑎

𝑛
,  𝑏

𝑛
∀ 𝑛 𝑓 = 0

almost everywhere, of course, this implies on almost everywhere and[− π,  π] 𝑓 = 0 [0,  π]

therefore, is 0 element of , consequently, is a complete𝑓 𝐿2 𝐸 = 1
π{ }⋃ 2

π   cos 𝑛𝑡
⎰
⎱

⎱
⎰

𝑛=1

∞

orthonormal basis. So, you can write a Fourier series corresponding to this you can expand

any function in in terms of the constant and the cosines and that is called the𝐿2 [0,  π]

Fourier Cosine series. This test we had the Fourier sine series.
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10. Let ,  and and𝑓,  𝑔 ∈ 𝐿2(− π,  π) 𝑓(𝑡) =
𝑎

0

2 +
𝑛=1

∞

∑ 𝑎
𝑛 

cos 𝑛𝑡 +  𝑏
𝑛
 sin 𝑛𝑡( )

. Then show that𝑔(𝑡) =
𝑐

0

2 +
𝑛=1

∞

∑ 𝑐
𝑛 

cos 𝑛𝑡 +  𝑑
𝑛
 sin 𝑛𝑡( )

1
π

−π

π

∫ 𝑓 𝑔 𝑑𝑡 =    
𝑎

0
 𝑐

0

2  +
𝑛=1

𝑁

∑ (𝑎
𝑛 

𝑐
𝑛

+ 𝑏
𝑛 

𝑑
𝑛
).  

Solution Take ,𝑓
𝑁

=
𝑎

0

2 +
𝑛=1

𝑁

∑ 𝑎
𝑛 

cos 𝑛𝑡 +  𝑏
𝑛
 sin 𝑛𝑡( ) 𝑓

𝑁
→ 𝑓  𝑖𝑛  𝐿2(− π,  π).

,𝑔
𝑁

=
𝑐

0

2 +
𝑛=1

𝑁

∑ 𝑐
𝑛 

cos 𝑛𝑡 +  𝑑
𝑛
 sin 𝑛𝑡( ) 𝑔

𝑁
→ 𝑔  𝑖𝑛  𝐿2(− π,  π).

−π

π

∫ 𝑓
𝑛 

𝑔
𝑛
 𝑑𝑡 =  

𝑎
0
𝑐

0

4  2π  +  
𝑛=1

𝑁

∑
−π

π

∫  (𝑎
𝑛 

𝑐
𝑛
 cos2 𝑛𝑡 + 𝑏

𝑛 
𝑑

𝑛
 sin2 𝑛𝑡 ) 𝑑𝑡  

[ ]
−π

π

∫ cos 𝑛𝑡 sin 𝑛𝑡 = 0

=   
𝑎

0
𝑐

0

2  π +   
𝑛=1

𝑁

∑
−π

π

∫  (𝑎
𝑛 

𝑐
𝑛
 ( 1+cos 2 𝑛𝑡 

2 ) + 𝑏
𝑛 

𝑑
𝑛
  ( 1− cos2 𝑛𝑡 

2 ) ) 𝑑𝑡  



=  π   
𝑎

0
 𝑐

0

2  +
𝑛=1

𝑁

∑ (𝑎
𝑛 

𝑐
𝑛

+ 𝑏
𝑛 

𝑑
𝑛
) ⎡⎢⎢⎣

⎤⎥⎥⎦

And now, you let . So, on both sides here you will get𝑁 → ∞

. So, that will prove the theorem that will give
−π

π

∫ 𝑓 𝑔 𝑑𝑡 =   π 
𝑎

0
 𝑐

0

2  +
𝑛=1

∞

∑ (𝑎
𝑛 

𝑐
𝑛

+ 𝑏
𝑛 

𝑑
𝑛
) ⎡⎢⎢⎣

⎤⎥⎥⎦
you the solution.

(Refer Slide Time: 19:03)



11. so find the Fourier series for and for . Use them to evaluate𝑓(𝑡) = 𝑡 𝑓(𝑡) = | 𝑡 |

and .ζ(2) =  
𝑛=1

∞

∑ 1

𝑛2  ζ(4) =  
𝑛=1

∞

∑ 1

𝑛4

Solution. So, is an odd function on .𝑓(𝑡) = 𝑡 [− π,  π]

So, this means that all the and𝑎
𝑛

= 0 𝑏
𝑛

= 1
π

−π

π

∫ 𝑡 sin 𝑛𝑡 𝑑𝑡 

and you do an integration by parts, which will give you

𝑏
𝑛

= 1
π

−π

π

∫ 𝑡 sin 𝑛𝑡 𝑑𝑡 =  2
𝑛 (− 1)𝑛+1.

Now, 1
π

−π

π

∫ 𝑡2 𝑑𝑡 =  
𝑎

0
2

2  +  
𝑛=1

∞

∑ (𝑎
𝑛

2 +  𝑏
𝑛

2) ⇒ 2
π  π3

3  =  4
𝑛=1

∞

∑ 1

𝑛2  ⇒  ζ(2) = π2

6 .

Now, is an even function on . and therefore . Therefore,𝑓(𝑡) = | 𝑡 | [− π,  π]    𝑏
𝑛

= 0

.𝑎
0

= 1
π

−π

π

∫ |𝑡| 𝑑𝑡 =  2
π

0

π

∫  𝑡 𝑑𝑡 =   2
π  π2

2 = π
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(integration by parts). So, you can check this𝑎
𝑛 

=  
0

π

∫  𝑡 cos 𝑛𝑡 𝑑𝑡 =  2

π 𝑛2 [(− 1)𝑛 − 1]

calculation. This is a routine calculation. So, you have , if is even𝑎
𝑛 

=  0 𝑛

, if is odd.𝑎
𝑛
 =  −  4

𝑛 π2 𝑛



So, only the odd ’s are surviving all the even ’s are 0.𝑎
𝑛

𝑎
𝑛

So, 1
π

−π

π

∫ |𝑡|2 𝑑𝑡 =  2
3 π2 =   

𝑎
0

2

2  +  
𝑛=1

∞

∑ 𝑎
𝑛

2 = π2

2  +  16

π2
𝑛=1

∞

∑ 1

(2 𝑛 −1)4

So,
𝑛=1

∞

∑ 1

(2 𝑛 −1)4 =  π2

16 
2
3 − 1

2⎡⎣ ⎤⎦π2 =  π4

96  .

Now,
𝑛=1

∞

∑ 1

(2 𝑛 )4 =  1
16 

𝑛=1

∞

∑ 1

𝑛4 .  

ζ(4) =  
𝑛=1

∞

∑ 1

𝑛4 = 1
16  ζ(4) +  π4

96  ⇒   15
16  ζ(4) =  π4

96  ⇒ ζ(4) = π4

90   .

So, that is how you compute. In fact, all the even powers can be computed. All the even zeta

values can be computed and you know the Riemann zeta function is very important.

And it is not known for the odd powers we do not know very much. In fact, the big result is,

was proved sometime in the 1990s that is a rational number. So, this is was proved, butζ(3) 

we do not know anything about for odd, the even once can be all computed in usingζ(𝑛) 𝑛

Fourier series in terms of what are called the Bernoulli numbers. So, we will continue the

exercises again.


