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Exercises.

Problem 1. a real Banach space and assume that the parallelogram law holds, that means𝑉

, we have Then is a Hilbert space.∀𝑥,  𝑦 ∈ 𝑉 𝑥+𝑦
2

|| |||| ||
2

+ 𝑥−𝑦
2

|| |||| ||
2

= 1
2 (||𝑥||2 + ||𝑦||2). 𝑉

So, this is the real version of Fréchet–von Neumann–Jordan theorem, which says that if you

have the parallelogram law, then the norm must come from the inner product.

Solution. So, we have to define the inner product. So, we worked backwards and tried to get

a formula for the inner product in terms of the norm. Define

(𝑢,  𝑣) = 1
4 (||𝑢 + 𝑣||2 − ||𝑢 − 𝑣||2).

We have to check this is an inner product which generates the norm. This is very easy

because if you take so it certainly generates the norm,(𝑢,  𝑢) = 1
4 (4||𝑢||2 − 0) = ||𝑢||2,

there is no problem with that. And also, it is easy to see that , that is obvious(𝑢,  𝑣) = (𝑣,  𝑢)



from the definition. So, we need to prove linearity. We do that in two stages, all several

stages. Let us take first .(2𝑢,  𝑣) = 1
4 (||2 𝑢 + 𝑣||2 − ||2 𝑢 − 𝑣||2)

(2𝑢,  𝑣) = 1
4 (||2 𝑢 + 𝑣||2 − ||2 𝑢 − 𝑣||2) =  𝑢+(𝑢+𝑣)

2
|| |||| ||

2
− 𝑢+(𝑢−𝑣)

2
|| |||| ||

2( )
Now, we are in a position to use the parallelogram law.
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Therefore, (2𝑢,  𝑣) =  1
2 ||𝑢||2 + 1

2 ||𝑢 + 𝑣||2 − ||𝑣||2

4 − 1
2 ||𝑢||2 − 1

2 ||𝑢 − 𝑣||2 + ||𝑣||2

4

= 1
2 ||𝑢 + 𝑣||2 − 1

2 ||𝑢 − 𝑣||2 = 2(𝑢,  𝑣)

So, . That is one relationship.(2𝑢,  𝑣) =  2(𝑢,  𝑣)



(𝑢
1

+ 𝑢
2
,  𝑣) = 1

4 (||𝑢
1

+ 𝑢
2

+  𝑣||2 − ||𝑢
1

+ 𝑢
2

−  𝑣||2)

=  ||(𝑢
1

+ 𝑣
2 ) + (𝑢

2
+ 𝑣

2 )||2 − ||(𝑢
1

− 𝑣
2 ) + (𝑢

2
− 𝑣

2 )||2( )
=  1

2 ||𝑢
1

+ 𝑣
2 ||2+  1

2 ||𝑢
2

+ 𝑣
2 ||2 − 1

4 ||𝑢
1

− 𝑢
2
||2 

−  1
2 ||𝑢

1
− 𝑣

2 ||2+  1
2 ||𝑢

2
− 𝑣

2 ||2 + 1
4 ||𝑢

1
− 𝑢

2
||2 

+= 2 𝑢
1
,  𝑣

2( ) 2 𝑢
2
,  𝑣

2( ) = (𝑢
1
,  𝑣) + (𝑢

2
,  𝑣)

Now, we have to show that .(α 𝑢,  𝑣) = α(𝑢,  𝑣)

We have shown it for . Now, if you haveα = 2 (3 𝑢,  𝑣) = (2 𝑢,  𝑣) + (𝑢,  𝑣) = 3(𝑢,  𝑣).

So, now, if you take any integer the , so by induction . And𝑚 (𝑚 𝑢,  𝑣) = 𝑚 (𝑢,  𝑣)

, from the definition. These two implies( 𝑢,  − 𝑣) =− (𝑢,  𝑣)

.(𝑚 𝑢,  𝑣) = 𝑚 (𝑢,  𝑣) ∀𝑚 ∈ ℤ
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Then , so So, it is true for all𝑛( 𝑚
𝑛 𝑢,  𝑣) = (𝑚 𝑢,  𝑣) = 𝑚 (𝑢,  𝑣) ( 𝑚

𝑛 𝑢,  𝑣) = 𝑚
𝑛 (𝑢,  𝑣).

rationales. Therefore, true for all reals by continuity. The inner product which we defined is



also continuous and therefore, if you take any real number approximated by rational numbers

and therefore, you have . So, we have that(α 𝑢,  𝑣) = α(𝑢,  𝑣) ∀α ∈ ℝ

, is symmetric and .( 𝑢
1

+ 𝑢
2
,  𝑣) = (𝑢

1
,  𝑣) + (𝑢

2
,  𝑣) (𝑢,  𝑣) ∀λ ∈ ℝ     (λ 𝑢,  𝑣) = λ(𝑢,  𝑣)

Therefore, the norm is generated by an inner product and therefore, we have that it becomes a

Hilbert space.
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Problem 2. Now, in the complex case, Banach over . Parallelogram law holds is𝑉 ℂ ⇒ 𝑉

Hilbert. That means the norm comes from an inner product.

Solution. Now, you define the inner product in the following way.

.(𝑢,  𝑣) = 1
4 ||𝑢 + 𝑣||2 − ||𝑢 − 𝑣||2 + 𝑖 ||𝑢 + 𝑖 𝑣||2 − 𝑖 ||𝑢 − 𝑖 𝑣||2( )

It is very similar to the real one. So, if you think is the real part, the||𝑢 + 𝑣||2 − ||𝑢 − 𝑣||2

imaginary part  also looks very much like the real part. If you now take

. Now, check ,(𝑢,  𝑢) = 1
4 4||𝑢||2 − 0 + 𝑖 2 ||𝑢||2 − 𝑖 2||𝑢||2( ) = ||𝑢||2 (𝑣,  𝑢) = (𝑢,  𝑣)

it is just a straightforward computation, you just have to pull out and so on and there is no𝑖

such thing. Now by 1, you have , i.e. linearity. So, now,(𝑢
1

+ 𝑢
2
,  𝑣) =  (𝑢

1
,  𝑣) + (𝑢

2
,  𝑣)



also you have that , because again this inner product looks∀λ ∈ ℝ     (λ 𝑢,  𝑣) = λ(𝑢,  𝑣)

exactly like the previous case and therefore, we can repeat all those arguments and then you

see.

And now, you just take Check.(𝑖 𝑢,  𝑣) = 𝑖(𝑢,  𝑣) 

These are just straightforward algebraic manipulations and therefore, you have

, and therefore, you have linearity in the first variables and you∀λ ∈ ℂ     (λ 𝑢,  𝑣) = λ(𝑢,  𝑣)

have conjugacy and you have that the norm is produced and therefore, this becomes a Hilbert

space.
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Problem 3. a Hilbert space, is closed subspace, and orthogonal projection onto𝐻 𝑀 ⊂ 𝐻 𝑃

, then this implies that .𝑀 ||𝑃|| = 1

Solution. is orthogonal projection. So, . And you have the𝑃 𝑥 = 𝑃 𝑥 + (𝐼 − 𝑃) 𝑥

because it is an orthogonal projection. And therefore,𝑃 𝑥 ⊥ (𝐼 − 𝑃) 𝑥

, the cross term will not exist.||𝑥||2 = ||𝑃 𝑥||2 + ||(𝐼 − 𝑃) 𝑥||2

Just in other words, a version of the Pythagoras theorem. You have and||𝑃 𝑥|| ≤ ||𝑥||

therefore Now you can do the other thing, if , then you have . And  ||𝑃|| ≤ 1. 𝑥 ∈ 𝑀 𝑃 𝑥 = 𝑥

therefore, this implies . Another way is to show that since it is a projection, you||𝑃 || = 1

have for therefore you have . So, you can𝑃2 = 𝑃 ||𝑃 || ≤ ||𝑃 ||2 ⇒ ||𝑃 || ≥ 1,   ||𝑃 || = 1

do it in either of these two ways.

Problem 4. This I already mentioned in the class, but did not do it fully, I asked you to verify

it. Let be a Hilbert space and such that , then is an orthogonal𝐻 𝑃 ∈ 𝐿(𝐻) 𝑃 = 𝑃2 = 𝑃* 𝑃

projection.
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Solution. and to show . So, that will show that it is an𝑀 = 𝑅(𝑃) 𝑀⊥ = 𝑅(𝐼 − 𝑃)

orthogonal projection. Let us take and see what the𝑃 𝑧 ∈ 𝑀   &    𝑥 − 𝑃 𝑥 ∈ 𝑅(𝐼 − 𝑃),  

inner product is.

(𝑃 𝑧,  𝑥 − 𝑃 𝑥) = ( 𝑃 𝑧,  𝑥) − (𝑃 𝑧,  𝑃 𝑥) = ( 𝑃 𝑧,  𝑥) − ( 𝑃* 𝑃 𝑧,  𝑥)

= ( 𝑃 𝑧,  𝑥) − ( 𝑃 𝑧,  𝑥) = 0

. Now, you can complete the proof in many ways. Let me do one of⇒  𝑅(𝐼 − 𝑃) ⊆ 𝑀⊥

them. We have to show that , so let me take the Hahn–Banach method. Let𝑀⊥ = 𝑅(𝐼 − 𝑃)



, such that . That means it vanishes on , then I𝑦 ∈ 𝑀⊥ (𝑦,  𝑧 − 𝑃𝑧) = 0,   ∀ 𝑧 ∈ 𝐻 𝑅(𝐼 − 𝑃)

want to show that it vanishes everywhere and therefore, I think we will not do this because

that only shows it is dense, but it will not show that it is in fact equal. Let us do another way.

So, we have that if . Now, is orthogonal to and𝑥 ∈ 𝑅(𝑃) ⋂ 𝑅(𝐼 − 𝑃) 𝑅(𝐼 − 𝑃) 𝑅(𝑃)

therefore So, . And then any can be(𝑥,  𝑥) = 0 ⇒ 𝑥 = 0. 𝑅(𝑃) ⋂ 𝑅(𝐼 − 𝑃) = {0} 𝑥

written as where and𝑥 = 𝑃 𝑥 + (𝐼 − 𝑃)𝑥,  𝑃𝑥 ∈ 𝑅(𝑃) (𝐼 − 𝑃)𝑥 ∈ 𝑅(𝐼 − 𝑃).

And therefore, you have 𝐻 = 𝑅(𝑃) ⊕ 𝑅(𝐼 − 𝑃) = 𝑅(𝑃) ⊕ 𝑀⊥ ,  𝑖. 𝑒.  𝑅(𝐼 − 𝑃) ⊂ 𝑀⊥.  

Therefore this implies . So, that completes the proof.𝑅(𝐼 − 𝑃) = 𝑀⊥
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Problem 5. Let us take . And then you look at the matrix𝐻 = 𝑙
2
𝑛 = (ℝ𝑛,  ||. ||

2
)

So, there is a matrix with all the same entries𝐽 = (𝑗
𝑖𝑘

),   𝑗
𝑖𝑘

= 1
𝑛 ,  ∀1 ≤ 𝑖 ≤ 𝑘 ≤ 𝑛.  

everywhere. Show that ( is a linear mapping and|| 𝐽 || = ||𝐼 − 𝐽|| = 1.  𝐽 :  𝑙
2
𝑛 →  𝑙

2
𝑛

therefore, it has a norm.)

Solution. By inspection, we have . So, if you multiply by , once again you will𝐽 = 𝐽* = 𝐽2 𝐽 𝐽

get . So, this implies is an orthogonal projection. Therefore , and similarly𝐽 𝐽 || 𝐽 || = 1 𝐼 − 𝐽



is also an orthogonal projection. Because if is an orthogonal projection, is an𝑃 𝐼 − 𝑃

orthogonal projection and therefore , so that is simply done.|| 𝐽 || = 1 = ||𝐼 − 𝐽||

(Refer Slide Time: 21:15)

Problem 6. Let be a Hilbert space and unitary. Then𝐻 𝑈 ∈ 𝐿(𝐻) ||𝑈 𝑥|| = ||𝑥||,  ∀ 𝑥 ∈ 𝐻.

That is is an isometry we have already seen. You have And therefore, we𝑈 𝑈 𝑈* = 𝑈*𝑈 = 𝐼.

have

and therefore, you get this. So, this we have||𝑥||2 =  (𝑈*𝑈 𝑥,  𝑥) =  (𝑈 𝑥,  𝑈 𝑥) = ||𝑈 𝑥||2 

already seen in the previous lecture, where we computed the spectrum of a unitary operator.

Problem 7. (a) Hilbert space closed subspace, continuous,𝐻 𝑊 ⊂ 𝐻 𝑎:  𝐻 × 𝐻 →  ℝ

H-elliptic bilinear form, and . Then there exists a unique such that𝑓 ∈ 𝐻 𝑤 ∈ 𝑊

So, we prove this, I mentioned this as a remark, we prove the𝑎(𝑤,  𝑣) =  (𝑓,  𝑣)    ∀ 𝑣 ∈ 𝑊.

Lax Milgram lemma for the whole of H. And now, we are saying that is true even in a, so

solution.

Solution. is also continuous because it is continuous on and w-elliptic𝑎:  𝑊 × 𝑊 →  ℝ 𝐻

as well, [with H-elliptic it is also w-elliptic because is only a subspace]. Now, if you take𝑊

, where is the orthogonal projection. So, by(𝑓,  𝑣) = (𝑃 𝑓,  𝑣)  ∀𝑣 ∈ 𝑊 𝑃 :  𝐻 → 𝑊 

Lax-Milgram because is a Hilbert space on its own, there exists a unique such that𝑊 𝑤 ∈ 𝑊

and . And therefore, we have shown that𝑎(𝑤,  𝑣) =  (𝑃 𝑓,  𝑣)    ∀ 𝑣 ∈ 𝑊 (𝑃 𝑓,  𝑣) =  (𝑓,  𝑣)

there exists a unique solution.(Refer Slide Time: 24:32)





(b) . that is the ellipticity condition and||𝑤|| ≤ ||𝑓||
α α ||𝑤||2 ≤  𝑎(𝑤,  𝑤) 𝑎(𝑤,  𝑤) = (𝑓,  𝑤)

because it solves the equation. By Cauchy Schwarz, Therefore, this(𝑓,  𝑤) ≤ ||𝑓|| ||𝑤||.

shows that . See that this estimate is independent of the subspace. So, whatever||𝑤|| ≤ ||𝑓||
α

may be the subspace whether you are solving this problem, the solution has the same estimate

for the norm.

( c) Let be the unique solution of So, you take the full𝑢 ∈  𝐻   𝑎(𝑢,  𝑣) =  (𝑓,  𝑣)    ∀ 𝑣 ∈ 𝐻.

problem of the entire space, then ||𝑢 − 𝑤||2 ≤ 𝑀
α  inf

𝑣 ∈𝑊
||𝑢 − 𝑣||.

Solution. α||𝑢 − 𝑤||2 ≤ 𝑎(𝑢 − 𝑤,  𝑢 − 𝑤) = 𝑎(𝑢 − 𝑤,  𝑢 − 𝑣 + 𝑣 − 𝑤)  ∀𝑣 ∈ 𝑊.

= 𝑎 (𝑢 − 𝑤,  𝑢 − 𝑣) +  𝑎(𝑢 − 𝑤,  𝑣 − 𝑤)

Now, because is the solution of the whole space and𝑎(𝑢,  𝑣 − 𝑤) = (𝑓,  𝑣 − 𝑤) 𝑢

because it is a solution in the subspace. So,𝑎(𝑤,  𝑣 − 𝑤) = (𝑓,  𝑣 − 𝑤)

and . Therefore, for 𝑎(𝑢 − 𝑤,  𝑣 − 𝑤) = 0 𝑎 (𝑢 − 𝑤,  𝑢 − 𝑣) ≤ 𝑀 ||𝑢 − 𝑤|| ||𝑢 − 𝑣||

every , you have . And therefore, I can take, this is true for𝑣 ∈ 𝑊 ||𝑢 − 𝑤||2 ≤ 𝑀
α ||𝑢 − 𝑣||

all . So, this implies𝑣 ∈ 𝑊 ||𝑢 − 𝑤||2 ≤ 𝑀
α  inf

𝑣 ∈𝑊
||𝑢 − 𝑣||.
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(d) separable and orthonormal basis. is a finite𝐻 {𝑒
𝑛
}

𝑛=1

∞ 𝑊
𝑛

=  𝑠𝑝𝑎𝑛 {𝑒
1
,  .  .  .,  𝑒

𝑛
}

dimension of closed subspace. . such that𝑓 ∈ 𝐻 𝑢
𝑛

∈ 𝑊
𝑛

𝑎(𝑢
𝑛
,  𝑣) = (𝑓,  𝑣),   ∀𝑣 ∈ 𝑊

𝑛
.

Then , what is ? is a solution in the whole space, .𝑢
𝑛
 →  𝑢 𝑢 𝑢 𝑎(𝑢,  𝑣) = (𝑓,  𝑣) ∀𝑣 ∈  𝐻

So, this tells you that these spare solutions are approximations of the original solutions.

this is what we know because that is is𝑢
𝑛

~
 =

𝑖=1

𝑛

∑ (𝑢,  𝑒
𝑖
) 𝑒

𝑖
   ⇒ 𝑢

𝑛

~
 → 𝑢    𝑖𝑛 𝐻,   𝑢

𝑛

~
 ∈ 𝑊

𝑛
 𝑢

nothing but the infinite series associated with this. Therefore,

(by the previous problem||𝑢 −  𝑢
𝑛
|| ≤ 𝑀

α  ||𝑢 − 𝑢
𝑛

~
 || → 0  ⇒   ||𝑢 −  𝑢

𝑛
|| →  0.

for any I have taken )||𝑢 −  𝑢
𝑛
|| ≤ 𝑀

α  inf  ||𝑢 − 𝑣 || 𝑣,  𝑣 = 𝑣
~

𝑛

Remark. We can even throw the Lax-Milgram Lemma directly from this fact. So, we can

prove the existence of directly and therefore, you can prove Lax-Milgram Lemma also.𝑢
𝑛

How? So, if I want to find the existence of without Lax-Milgram, i.e., we want to find𝑢
𝑛

𝑢
𝑛

such that, . So, by linearity it is enough to check for the basis element.𝑎 (𝑢
𝑛
,  𝑣) =  (𝑓,  𝑣)



So, you take Now, , substituting this we𝑎 (𝑢
𝑛
,  𝑒

𝑖
) =  (𝑓,  𝑒

𝑖
),   1 ≤ 𝑖 ≤ 𝑛. 𝑢

𝑛 
=

𝑗=1

𝑛

∑ α
𝑗
 𝑒

𝑗
 

have
𝑗=1

𝑛

∑ 𝑎 (𝑒
𝑗
,  𝑒

𝑖
) α

𝑗
 =  (𝑓,  𝑒

𝑖
),   1 ≤ 𝑖 ≤ 𝑛.

(Refer Slide Time: 31:52)

And therefore, you get a linear system, , where is𝐴 α =  𝐹 𝐴 = (𝑎
𝑖𝑗

) = 𝑎 (𝑒
𝑖
,  𝑒

𝑗
). α 

unknown vector and . So, if you solveα =  (α
1
,  .  .  ., α

𝑛
)𝑇  𝐹 = ( (𝑓,  𝑒

1
),.  .  .  .  ,  (𝑓,  𝑒

𝑛
))𝑇

this linear system, you will get , so you will get and that will prove. So, all you need toα 𝑢
𝑛

show is that matrix is invertible. Take, Then𝐴 𝑥 =  (𝑥
1
,  .  .  ., 𝑥

𝑛
)𝑇.

, since the are𝑥𝑇 𝐴 𝑥 =  𝑎 ∑ 𝑥
𝑗
 𝑒

𝑗
,  ∑ 𝑥

𝑖
 𝑒

𝑖( ) ≥  α ∑ 𝑥
𝑗 
𝑒

𝑗

||||

||||

||||

||||

2

= α |𝑥|2  |𝑥|2 = ∑ |𝑥
𝑖
|2, 𝑒

𝑗
'𝑠

orthonormal. Therefore, is positive definite and therefore implies 1-1 invertible and𝐴 ⇒

therefore, there exists a unique solution implies there exists a unique solution . Andα  ⇒ 𝑢
𝑛



now, because , you can also now prove the Lax-Milgram lemma, you have𝑢
𝑛

→ 𝑢

, . So, given any , you have .𝑎 (𝑢
𝑛
,  𝑣) =  (𝑓,  𝑣) ∀ 𝑣 ∈ 𝑊

𝑛
𝑣 ∈ 𝐻 𝑣

𝑛 
=

𝑖=1

𝑛

∑ (𝑣,  𝑒
𝑖
)𝑒

𝑖
  

And therefore, in and therefore, you have . And now, pass𝑣
𝑛 

→  𝑣 𝐻 (𝑎 𝑢
𝑛
,   𝑣

𝑛 
) = (𝑓,  𝑣

𝑛 
)

to the limit because is continuous being linear form, this and and therefore,𝑎 𝑢
𝑛

→ 𝑢 𝑣
𝑛

→ 𝑣

this gives you [ ] and therefore, we have produced a solution for the𝑓 𝑎 (𝑢 ,  𝑣) =  (𝑓,  𝑣)

original for every . So therefore, we have proved Lax-Milgram Lemma by this𝑣 ∈ 𝐻

approximation process, at least for the separable Hilbert space. So, we will continue the

exercises.


