Functional Analysis
Professor S. Kesavan
Department of Mathematics
The Institute of Mathematical Sciences

Lecture No. 60
Exercises - Part 1
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Exercises.
Problem 1. V a real Banach space and assume that the parallelogram law holds, that means

Vx, y €V, we have || 25- || || = 2 (lIxlI* + [IyI"). Then V is a Hilbert space.

So, this is the real version of Fréchet-von Neumann—Jordan theorem, which says that if you

have the parallelogram law, then the norm must come from the inner product.

Solution. So, we have to define the inner product. So, we worked backwards and tried to get

a formula for the inner product in terms of the norm. Define

1 2 2
(w, v) = (lu+ vl = [lu—v]]).

We have to check this is an inner product which generates the norm. This is very easy
) 2 2. .
because if you take (u, u) = % (4[lu]l” — 0) = ||u]|, so it certainly generates the norm,

there is no problem with that. And also, it is easy to see that (u, v) = (v, u), that is obvious



from the definition. So, we need to prove linearity. We do that in two stages, all several

stages. Let us take first (2u, v) = —(||2u + || — |[2u — v]|*).

2
| 2

1 2 2 +(u+ +(u—
2, v) = (U2 + vll* = 112 = ol = (|| - ||t

)

Now, we are in a position to use the parallelogram law.
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1 2 1 2 o> 1 2 1 2 |
Therefore, (2u, v) = —|[ull" + 5 llu + V|| = ——llull” —Fllu —v|| +—

1 2 1 2
=7l + o[ =5 [lu = v|[" = 2w v)

So, (2u, v) = 2(u, v). That is one relationship.



_ 1 2_ _ 2
(u, +u, v) =7 (lu +u, + v llu, +u, = v|[)
v AN v V2
(e, + 5 + @, + DI = e, =9 + @, -DI’)

- L Ty L 2Ly —ull?
- 2 ||u1+ 2 || + 2 ||u2+ 2 || 4 ”ul uzll

1 T 1 T 1 2
= Sl =5+ S, =1+, —wll

— X X\ —
= Z(ul, 2)+ Z(uz, 2)— (ul, v) + (uz, V)
Now, we have to show that (au, v) = a(u, v).

We have shown it for a = 2. Now, if you have (3u, v) = (2u, v) + (4, v) = 3(y, v).
So, now, if you take any integer the m, so by induction (mu, v) = m (u, v). And

(u, —v)=—(u v), from  the  definition. These  two  implies

(mu, v) =m(u v)Vme?Z.
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Then n(%u, v) = (mu, v) = m(u, v), so (%u, V) = %(u, v). So, it is true for all

rationales. Therefore, true for all reals by continuity. The inner product which we defined is



also continuous and therefore, if you take any real number approximated by rational numbers

and therefore, you have (a u, v) = a(u, v) Va € R. So, we have that
(u1 tu, V) = (ul, v) + (uz, V), (1, v) is symmetricand VA € R (Au, v) = A(y, v).

Therefore, the norm is generated by an inner product and therefore, we have that it becomes a

Hilbert space.
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Problem 2. Now, in the complex case, V Banach over C. Parallelogram law holds = V is

Hilbert. That means the norm comes from an inner product.

Solution. Now, you define the inner product in the following way.
1 2 2 , . 2 , . 2
w v) =—(llw +vll" = e = vlI" + iflu + iv]]” = i]lu = iv]]).

It is very similar to the real one. So, if you think ||u + v| |2 — |lu — v| |2 is the real part, the
imaginary part also looks very much like the real part. If you now take

1 2 . 2 2 2 —_—
(w w) = S (4llull” = 0 + &2 |jull” = #/2|[ull") = [jull". Now, check (v, u) = (u, v),

it is just a straightforward computation, you just have to pull out i and so on and there is no

such thing. Now by 1, you have (u LT u, v) = (u v v) + (u - V), 1.e. linearity. So, now,



also you have that VA € R (Au, v) = A(u, v), because again this inner product looks
exactly like the previous case and therefore, we can repeat all those arguments and then you

see.
And now, you just take (i u, v) = i(u, v) Check.

These are just straightforward algebraic manipulations and therefore, you have
VAe C (Au, v) = A(y, v), and therefore, you have linearity in the first variables and you
have conjugacy and you have that the norm is produced and therefore, this becomes a Hilbert

space.
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Problem 3. H a Hilbert space, M < H is closed subspace, and P orthogonal projection onto

M, then this implies that ||P|| = 1.
Solution. P is orthogonal projection. So, x = Px + (I — P) x. And you have the
Px L (I —P)x because it is an orthogonal projection. And therefore,

2 2 2 : :
x| = |IPx|| + ||(I — P)x]||, the cross term will not exist.

Just in other words, a version of the Pythagoras theorem. You have ||P x|| < ||x]|| and
therefore ||P|| < 1. Now you can do the other thing, if x € M, then you have P x = x. And

therefore, this implies ||P || = 1. Another way is to show that since it is a projection, you

have P° = P for [P || < ||P ||2 = ||P || = 1, therefore you have ||P || = 1. So, you can

do it in either of these two ways.

Problem 4. This I already mentioned in the class, but did not do it fully, I asked you to verify
it. Let H be a Hilbert space and P € L(H) such that P = P’ = P*, then P is an orthogonal

projection.
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Solution. M = R(P) and to show M= R(I — P). So, that will show that it is an
orthogonal projection. Let us take Pz € M & x — Px € R(I — P), and see what the

inner product is.
(Pz,x —Px)=(Pz,x) —(Pz, Px) =(Pz x) — (P*Pz, X)
=(Pz,x)—(Pz,x)=0

= R(I — P) © M Now, you can complete the proof in many ways. Let me do one of

them. We have to show that M™ = R(I — P), so let me take the Hahn—Banach method. Let



y € M , such that (y, z — Pz) = 0, Vz € H . That means it vanishes on R(I — P), then |
want to show that it vanishes everywhere and therefore, I think we will not do this because

that only shows it is dense, but it will not show that it is in fact equal. Let us do another way.

So, we have that if x € R(P) N R(I — P). Now, R(I — P) is orthogonal to R(P) and

therefore (x, x) = 0=>x = 0. So, R(P) NR(I — P) = {0}. And then any x can be
writtenas x = Px + (I — P)x, where Px € R(P)and (I — P)x € R(I — P).
And therefore, you have H = R(P) @ R(I — P) = R(P) ® M", i.e. R — P) c M.

Therefore this implies R(I — P) = M g So, that completes the proof.
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Problem 5. Let us take H = lz = (]Rn, []- 1] 2). And then you look at the matrix
J = (jik), jik = %, V1 < i < k < n. So, there is a matrix with all the same entries

everywhere. Show that ||J|| = ||l = J|| = 1. (J: l;l - l;l is a linear mapping and

therefore, it has a norm.)

Solution. By inspection, we have | = | "= ] 2 So, if you multiply J by J, once again you will

get J. So, this implies J is an orthogonal projection. Therefore || J || = 1, and similarly [ — ]



is also an orthogonal projection. Because if P is an orthogonal projection, I — P is an

orthogonal projection and therefore || /|| = 1 = ||I — J||, so that is simply done.
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Problem 6. Let H be a Hilbert space and U € L(H) unitary. Then ||U x|| = ||x]||, Vx € H.

That is Uis an isometry we have already seen. You have U U=UU =1IAnd therefore, we

have

||x||2 = (U*U x,x) = (Ux, Ux) = ||U x||2 and therefore, you get this. So, this we have

already seen in the previous lecture, where we computed the spectrum of a unitary operator.

Problem 7. (a) H Hilbert space W < H closed subspace, a: H X H = R continuous,
H-elliptic bilinear form, and f € H. Then there exists a unique w € W such that
a(w, v) = (f, v) Vv € W. So, we prove this, I mentioned this as a remark, we prove the
Lax Milgram lemma for the whole of H. And now, we are saying that is true even in a, so

solution.

Solution. a: W X W — R is also continuous because it is continuous on H and w-elliptic

as well, [with H-elliptic it is also w-elliptic because W is only a subspace]. Now, if you take

(f,vy=({Pf,v)VveW, where P: H—> Wis the orthogonal projection. So, by
Lax-Milgram because W is a Hilbert space on its own, there exists a unique w € W such that
alw, v) = (Pf,v) Vv € Wand (Pf, v) = (f, v). And therefore, we have shown that

there exists a unique solution.(Refer Slide Time: 24:32)
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d) |w]| < UL g ||w||2 < a(w, w) that is the ellipticity condition and a(w, w) = (f, w)

(04

because it solves the equation. By Cauchy Schwarz, (f, w) < [|f|| ||w||. Therefore, this
A

SN

shows that ||w|| < . See that this estimate is independent of the subspace. So, whatever

o
may be the subspace whether you are solving this problem, the solution has the same estimate

for the norm.

(c) Let u € H be the unique solution of a(u, v) = (f, v) Vv € H. So, you take the full

. 2 .
problem of the entire space, then ||[u — w|| < % lnfv eW||

u — vll.
. 2
Solution. a|lu —w|| <alu—-—w,u—-—w)=alu—w,u—v+v—w)VveW.

=au-w,u—-v) + alu—w,v—w)

Now, a(u, v — w) = (f, v — w) because u is the solution of the whole space and
aw,v —w) = (f, v —w) because it is a solution in the subspace. So,

alu—w,v—w)=0 anda(u — w, u — v) < M||lu — w|| ||lu — v||. Therefore, for

2 .
every v € W, you have ||lu — w|| < %llu — v||. And therefore, I can take, this is true for

.. . 2 M .
—_ < — —_
allv € W. So, this implies |[|u — w||" < — 1nfvE [lu = v||.
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(d) H separable and {en}oo orthonormal basis. W = span {el, Ce en} is a finite
n=1

dimension of closed subspace. f € H. u € Wn such that a(un, v) = (f, v), Vv € Wn.
Then u - u, what is u? u is a solution in the whole space, a(u, v) = (f, v) Vv € H.
So, this tells you that these spare solutions are approximations of the original solutions.

n

u = Y (u, el,) e. >u —u inH, u € Wn this is what we know because that is u is
i=1

nothing but the infinite series associated with this. Therefore,

[lu — un|| S% ||u —un|| -0 = |lu - un|| — 0. (by the previous problem

~

u — u Sﬁinf u — v|| forany v, Ihavetakenv =v
n a y n

Remark. We can even throw the Lax-Milgram Lemma directly from this fact. So, we can

prove the existence of u directly and therefore, you can prove Lax-Milgram Lemma also.

How? So, if I want to find the existence of u without Lax-Milgram, i.e., we want to find u

such that, a (u , v) = (f, v). So, by linearity it is enough to check for the basis element.



n

So, you take a (un, ei) = (f, ei), 1 <i < n Now, u = > ae, substituting this we
j=1

n
have ) a(ej, ei) @ = (f, el,), 1<i<sn
j=1

(Refer Slide Time: 31:52)
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And therefore, you get a linear system, Aa = F, where A = (al_j) =a (el_, e/_).a is
unknown vector a = (al, Ce an)T and F = ((f, 81)" oo () en))T. So, if you solve

this linear system, you will get a, so you will get u and that will prove. So, all you need to

. . . . : T
show is that matrix A is invertible. Take, x = (xl, Ce xn). Then

2

T 2 2 2 .
x Ax = a(Z x.e, in ei)z a ijej = alx], |x|] =) |xi| , since the ej's are

orthonormal. Therefore, A is positive definite and therefore implies 1-1 = invertible and

therefore, there exists a unique solution « = implies there exists a unique solution u . And



now, because u —u, you can also now prove the Lax-Milgram lemma, you have

n
a (un, v) = (f,v), Vv E€ Wn. So, given any v € H, you have vo= Y (v, el,)ei .

i=1
And therefore, v v in H and therefore, you have (a u, vn) = (f, vn). And now, pass
to the limit because a is continuous being linear form, this u —>u and v v and therefore,

this gives you f [a (v, v) = (f, v)] and therefore, we have produced a solution for the

original for every v € H. So therefore, we have proved Lax-Milgram Lemma by this
approximation process, at least for the separable Hilbert space. So, we will continue the

exercises.



