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Isomorphism. We will now talk about isomorphisms. Let V  and W  be norm linear spaces and

T :V ↦W  linear 1 - 1 and onto. In linear algebra, this would mean that it  is an isomorphism

between the two vector spaces.  But,  now we are in the question of norm linear spaces,  and

therefore we say that, T  is a isomorphism if both T  and T−1 inverse are continuous.

So, whenever we talk of isomorphism in the context of norm linear spaces, we mean a 1 -1, onto,

linear  map  which  is  continuous  and  the  inverse  is  also  continuous.  So  given  two  norms

¿∨.∨|(1),∨¿ .∨|(2) on a vector space V  (I am putting a bracket now, so that we do not confuse

with  the  ¿∨.∨|1 ,∨¿ .∨|2 which  we  defined  earlier).  We  say  that  ¿∨.∨|
(1 )
∧¿∨.∨|(2) are

equivalent  if  they  induce  the  same  topology  on  V .  This  means  that,  if  I  have  V  with

¿∨.∨|
(1 )
∧¿∨.∨|(2), then I have two norm linear spaces. I look at the identity map between these

two spaces i.e., I :¿. Notice that, the norms are equivalent if and only if I is an isomorphism. 

Now,  if  I  is  an  isomorphism,  then  we  have  that  ¿∨.∨|
(2 )
≤k 1∨¿ .∨|

(1) and  also

¿∨.∨|(1 )≤k 2∨¿ .∨|(2 ) for  all  x∈V . Therefore,  we  can  say  for  all

x∈V ,C1∨¿ .∨|(1 )≤∨¿ .∨|(2 )≤C2∨¿ .∨|(1 ) for some C1 ,C2>0.    
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So, this is a necessary and sufficient condition for two norms to be equivalent which means that

the topologies are the same, or in other words, the identity map is an isomorphism.

Let us look at some examples. 

Example  1  Let  us  take  RN  with  the  ¿∨.∨|1and  ¿∨.∨|∞.  What  is  ¿∨.∨|1?

¿|x||1=¿ x1∨+…+¿ xN∨¿ and ¿|x||∞= max
i=1 ,… , N

¿ x i∨¿¿. Then, we have that ¿∨x∨|∞≤∨¿ x∨|1 and

¿∨x∨|1≤N∨¿ x∨|∞ (as each  ¿ x i∨¿ is less than the maximum ¿∨x∨|∞). And therefore, these

two norms are equivalent.

Now, let us look at ¿∨.∨|1 and ¿∨.∨|2. So, what is ¿∨.∨|2? ¿∨x∨|2=[ ∑
i=1 ,…N

|x i|
2

]
1
2 . So, we have

that  ∑
i=1 ,…N

|xi|
2
≤ [ ∑

i=1 ,…N
|x i|]

2

 (because the cross terms are missing, only the squares are there).

Therefore, from this it immediately follows that  ¿|x||2≤||x||1 . If you apply the Cauchy–Schwarz

inequality, then ||x||1≤√N||x||2. So, these two norms are also equivalent. So, ||x||1, ||x||2 ,||x||∞ are

all equivalent norms (because equivalence is of course a transitive condition).

 

What  is  the  usual  topology on  RN?  In the usual  topology,  you take  neighborhoods  as  balls

centered  at  points  and this  is  given by the  ||x||2.  So,  ||x||2 gives you the usual  topology and

therefore  ||x||1,  ||x||∞ also give the same topology. We know that because inside any ball with



respect to one of these norms, you can put any other smaller ball with respect to the other norms

at every point. And therefore, the topologies are the same.

So,  we now saw that  ||x||1,  ||x||∞,||x||2 are  all  equivalent,  in  fact  it  turns  out  that,  in a  finite

dimension and space, all norms are equivalent. So, this is a very beautiful theorem which we will

now prove.
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Theorem. Let V  be a finite dimensional vector space. Then, all norms on V  are equivalent. 

 Recall that lN
1  is nothing but the space RN with ||.||1. V  is a vector space, finite dimensional, say

dimV=N . And given with some norm ||.||. So, we will show that these two are isomorphic. 

So, we claim V  is isomorphic to lN
1 , whatever be the norm on V . We show that it is going to be

isomorphic to lN
1 . Now, assume the claim is true. Take V  with two norms, ||.||1 and ||.||2 and you

also have lN
1 . We have ¿ and the identity map between them and then, the same isomorphism T

from lN
1 . Then we show that the identity map is an isomorphism. That will ne the idea of our

proof.

Proof.   Let  e1,...,eN  be the standard basis  of  RN .  Fix a  basis,  v1 ,…vN of  V  and you define

T (ei )=v i and extend linearly. 
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We already saw in the earlier example that T  is continuous. And, also we know that T  is 1 - 1

and onto because it maps a basis into a basis among spaces of the same dimension. Now we want

to show that T−1 is continuous. Assume that it is not. Then we saw that continuity is the same as

continuity at the origin and therefore, it is not continuous at 0, what does this mean? There exists

a sequence ( yn) converging to 0 and ϵ>0 such that ¿∨T−1
( yn)∨|1>ϵ. This is the contradiction. I

mean contra positive statement of the fact that it is not continuous at the origin.

Now let me define zn=
yn

||T−1
( yn )||1

. Now, ¿∨T−1
( yn)∨|1>ϵ . So, the denominator is staying away

from ϵ  and therefore (zn) will also converge to 0 in V . Now, what about T−1
( zn )? ||T−1

( zn )||n=1

(because I have divided by the correct number). So, (T−1
( zn)) is a bounded sequence. Since the lN

1

norm, the  ¿∨.∨|1,  ¿∨.∨|2 are all  the same, that is  the usual  topology in  RN .  If  you have a

bounded  sequence  then  it  has  a  convergent  subsequence.  So,  there  exists  a  convergent

subsequence. Let us say T−1
( znk )→x . Then this implies that ||x||1=1. But what about T (x )? T (x )

is  the  limit  of   T (T−1
( znk)) which  is  znk

and  lim znk=0.  So,  T (x )=0 and  ||x||1=1,  which  is

impossible since  T  is 1 -1. Therefore, contradiction. Consequently,  T−1 is also continuous and

therefore as I said, we have ¿ and the identity map between them and then, the same map T  from

lN
1  to them, which is an isomorphism. So, the identity is a composition of  T−1 and  T  in either

ways and therefore, you have the identity map is an isomorphism in both ways. And therefore,



the, therefore we have that identity map is an isomorphism and consequently, all the norms are

equivalent.

This is not true in infinite dimensions. 
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Example. Let us take an example of C [0,1 ] . We have the usual norm ||f||=max
0≤t ≤1

¿ f ( t )∨¿¿. Now,

I am going to define  ||f||1=∫
[0,1]

¿ f (t )∨¿dt . ¿ You can check that this is a norm. So this is very

easy to check, triangle inequality is also trivial  and therefore, this defines a nice norm linear

space. I claim that these two are not equivalent. Now, first of all,||f||1≤∨|f|∨¿. Now, what about

the reverse inequality? Can you write  ||f||≤C||f||1? Is this possible? Answer is no. So, we can

give a counter example, we can construct several, there is one in the book which I mentioned to

you and now I will  give you another  one.  So, let  us take  f n ( t )=tn.  Then,  what is  ¿∨f n∨¿?

¿∨f n∨¿=1 for all n. What is ¿∨f n∨|1? Well, it is a non-negative function. Therefore, it is just

an integral which is therefore  ¿∨f n∨|1=
1

n+1
. So, if you put f nin ||f||≤C||f||1, you will get 1 on

this side and 
1

n+1
 on that side, which goes to 0 and therefore this inequality is not possible and

Consequently, you cannot have, so you cannot have the equivalence of norms. 

So,  in  infinite  dimensional  spaces,  you  do  not  have  the  equivalence  of  norms.  Now,  the

equivalence of norms followed from the main thing which we used in proving the equivalence of



norms is that the unit ball or bounded sets, bounded and closed sets were compact. Now, this in

fact  characterizes  finite  dimensional  spaces.  This  is  a  very  amazing  fact,  the  dimension  is

something  which  is  purely  algebraic.   It  says  how  many,  what  is  the  maximal  linearly

independent set, so that is a completely algebraic statement. On the other hand, the compactness

of the unit ball is a topological statement, and these two are connected by this theorem. So, we

have the very beautiful result. 
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Theorem. Let B={x∈V :||x||≤1 }, where V  is a normed linear space. Then B is compact iff V  is

finite dimensional.   

Before we prove this, we need a Lemma. So, we have a 

Lemma (Riesz). Let V   be a norm linear space and W ⊂V  (closed and proper subspace). Given

ϵ>0, there exists a u∈V  such that ||u||=1 and d (u,W )≥1−ϵ . 

What is the distance  d ( x ,W )≥?  d (u ,W )=inf {||x− y||: y∈W } . So it is the shortest distance in

which you can come from x to  W . So, Reisz Lemma says that you have a closed and proper

subspace W , then you can find a vector u which is a unit vector, such that d (u ,W )≥1−ϵ ..

Proof. So, W  is proper, so there exists a v∈V∖W  and let us take δ=d (v ,W ). Note that W  is

closed. So  δ  has to be strictly positive. Okay, but what is  δ? The distance is nothing but the

infimum of something, so choose w∈W  such that 

δ ≤||v−w||≤
δ
1−ϵ

.
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Now put ¿
v−w

¿|v−w|∨¿¿
 . Then ||u||=1. So, let us check that the other property is true. Let z be an

arbitrary element in W . So what is ¿∨u−z∨¿? 

||u−z||=|| v−w

||v−w||
−z||=¿|v−(w+||v−w||z )|∨ ¿

¿|v−w|∨¿≥
δ

(
δ
1−ϵ

)

=1−ϵ . ¿
¿

Therefore, ||u−z||≥1−ϵ  for any z∈W . Therefore d (u ,W )≥1−ϵ . So, this is our proof.

Now we will prove the dimension theorem. Namely, 

Theorem.  Unit  ball  is  compact  in  a  normed  linear  space  if  and only  if  the  space  is  finite

dimensional. 

Proof.  Let us assume V  be a finite dimensional norm linear space. So, let B be the closed unit

ball. Now, recall the mapping T  which we defined early, T : lN
1 ↦V  where N  is the dimension of

V . We saw that this is an isomorphism. Since B is closed unit ball, so T−1
(B ) is bounded and

closed,  therefore  compact  in  lN
1 .  Since  continuous  image  of  a  compact  set  is  compact,  so

¿T (T−1 (B )) is compact. So, this shows that if you have a finite dimensional space, the closed

unit ball is always compact. This is of course expected. 
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Now, let us do the converse. Let  B be compact. To show  V  is finite dimensional. Since  B is

compact there exists x1 ,…, xk∈B such that, ∪i=1 ,…,kB (x i ,
1
2 )⊃B.  I claim V  is nothing but the

span of x1 ,…, xk. So, this will prove, this shows that the dimension of V  is less than or equal to k

, which is finite. We cannot say it is equal to  k  because we do not know if these are linearly

independent or not, but we do not need that.

So, let  us assume not, so  W=span {x1 ,…, xk }⊂V .  So,  W  is finite  dimensional.  What does it

mean?  In  every  finite  dimensional  space,  all  norms  are  same  and  therefore  every  finite

dimensional space is complete and since it is a complete subspace of a norm linear space, it is

close, implies W  is closed. (Remark - all norms on a finite dimensional space are equivalent.) 

So, W  is closed and it is proper subspace of V , therefore by Reisz Lemma, there exists a u∈B

i.e., ||u||=1 such that d (u ,W )≥ 2
3

 . But this is a contradiction. In particular, d (u , xi )=||u−x i||≥
2
3
.

But the entire  B is contained in the union of the balls of radius half with center  x i, so this is a

contradiction. Therefore, the claim is established and we have shown that this is true. 

So,  finite  dimensional  spaces  characterized  by  the  compactness  of  the  ball.  So,  in  infinite

dimensional spaces, the unit ball or a closed bounded set is never compact. 
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Example.  Let  us  take  l2={( x i ) : ∑
i=1 ,… ,∞

|x i|
2
<∞ }.  So,  let  me  take  e i=(0 ,…,1 ( i th ) ,…0) . Then

¿∨ei−e j∨¿=√2 . So,  this  means each element  is  at  equal  distance  from all  other  elements.

Therefore, (e i¿ does not have a Cauchy subsequence, that is,  (e i) does not have a convergence

subsequence. Therefore, unit ball in  l2 is not compact, because if it were compact, then every

bounded sequence has to have a convergence subsequence. So this is an example where this is

not true. So, l2 is not finite dimensional.


