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We continue with the study of the spectrum. This time we will talk about operators on a

Hilbert space. So, I want to recall once more the theorem which we proved long ago. So, we

have that, if Banach and , then we have is closed if and only if𝑉,  𝑊 𝐴 ∈ 𝐿(𝑉,  𝑊) 𝑅(𝐴) 

is closed. Then we had the following result. Namely, is onto and then𝑅(𝐴*) 𝐴

and is closed, .|| 𝐴*ϕ|| ≥ 𝐶 ||ϕ||  ∀ϕ ∈ 𝑊* 𝑅(𝐴*) 𝑁(𝐴*) = 0

These are all equivalent to each other and this is a theorem which we had. So, now, we prove

a very useful lemma which we will use again and again.

Lemma: Hilbert space and . So, it is a bounded linear operator from to itself.𝐻 𝑇 ∈ 𝐿(𝐻) 𝐻

Let us assume has closed range and that and are both injective. Then, and are𝑇 𝑇 𝑇* 𝑇 𝑇*

invertible.



Proof. has closed range has closed range and is 1-1 is (given) and therefore, these𝑇 ⇒  𝑇* 𝑇*  

two imply the is onto, by the theorem which we stated.𝑇

So, is 1-1, onto and continuous, and therefore, by the open mapping theorem, is𝑇 𝑇

invertible. And invertible means is invertible as we have already seen yesterday. So,𝑇 𝑇* 𝑇

and are both invertible. So, this is a very useful lemma which we will have occasion to use𝑇*

today again and again.
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Proposition. Hilbert space over , such that Then𝐻 ℂ (𝑇𝑥,  𝑥) = 0,  ∀𝑥 ∈ 𝐻. 𝑇 = 0.

Proof. .0 = (𝑇(𝑥 + 𝑦),  𝑥 + 𝑦) = (𝑇𝑥,  𝑦) + (𝑇𝑦,  𝑥)

0 = (𝑇(𝑥 + 𝑖 𝑦),  𝑥 + 𝑖 𝑦) = (𝑇 𝑥,  𝑖 𝑦) + 𝑖 (𝑇𝑦,  𝑥) =− 𝑖 (𝑇 𝑥,  𝑦) + 𝑖 (𝑇𝑦,  𝑥)

⇒ (𝑇𝑥,  𝑦) + (𝑇𝑦,  𝑥) = 0  &  (𝑇𝑥,  𝑦) − (𝑇𝑦,  𝑥) = 0 

i.e. So, is important in this particular⇒ (𝑇𝑥,  𝑦) =  0,  ∀𝑥,  𝑦 ⇒ 𝑇𝑥 = 0,  ∀𝑥 𝑇 = 0. ℂ

result.
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So, if you had a real Hilbert space. For instance, if you take , then you take(ℝ2,  ||. ||
2
) =  𝑙

2
2

given by rotation of axis by . So, the matrix of is𝑇 π/2 𝑇

0       -1

1        0

And then if you take , you get and therefore, , [𝑥,  𝑦]𝑇 𝑇[𝑥,  𝑦]𝑇 = [𝑦,  − 𝑥]𝑇 (𝑇𝑥,  𝑥) = 0,  ∀𝑥

and then at all. So, it is the presence of the , which makes a difference there, and𝑇 ≠ 0 𝑖

therefore, that is important.

Lemma. Let be a Hilbert space over . Henceforth we will work over and𝐻 ℂ ℂ

. Then self-adjoint, . Again, obviously, this does not apply to(𝑇𝑥,  𝑥) ≥ 0,  ∀𝑥 ∈ 𝐻 𝑇 𝑇 =  𝑇*

the real case because the previous example gave you which is a particular case(𝑇𝑥,  𝑥) = 0

of and this matrix is not self-adjoint matrix and therefore, you have that, this is(𝑇𝑥,  𝑥) ≥ 0

not applicable in the real case, so it depends on the complex case.

Proof. , i.e.,0 ≤ (𝑇𝑥,  𝑥) = (𝑇𝑥,  𝑥) = (𝑥,  𝑇𝑥) = (𝑇*𝑥,  𝑥) ((𝑇 − 𝑇*)𝑥,  𝑥) = 0,  ∀𝑥 ∈ 𝐻

( is real ). By the previous proposition you have the .(𝑇𝑥,  𝑥) ⇒ (𝑇𝑥,  𝑥) = (𝑇𝑥,  𝑥) 𝑇 =  𝑇*
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So, now we come to a very nice theorem.

Theorem. Let be a Hilbert space over , let . Then𝐻 ℂ 𝑇 ∈ 𝐿(𝐻)

1. if , then . So, the spectrum contains only real numbers.𝑇 =  𝑇* σ(𝑇) ⊆ ℝ

2. if , so is unitary implies . That means𝑇 𝑇* =  𝑇* 𝑇 =  𝐼  𝑇 σ(𝑇) ⊆ {λ ∈ ℂ / |λ| = 1}

the spectrum is contained in the unit circle of the complex plane.

3. if , then(𝑇𝑥,  𝑥) ≥ 0,  ∀𝑥 ∈ 𝐻 σ(𝑇) ⊆ [0,  ∞).

So, real self-adjoint operators have spectrum and the real line, unitary operators are spectrum

on the unit circle, and positive operators are spectrum in the positive real line.

This is analogous to the real numbers, this is the normal operators you can see, if you think of

them as complex numbers, then * is like conjugation. So, if that means it resembles𝑇 = 𝑇*

real numbers and that is reflected by the fact, that is contained in the real numbers.σ(𝑇)

Now, is like saying . So, this looks like the unit circle. So, that is exactly the spectrum𝑇𝑇* 𝑧𝑧‾ 

is in the unit circle, , means . And similarly, if is a positive operator, so it|λ| = 1 λ λ‾ = 1 𝑇

looks like positive real numbers then in fact the spectrum is indeed in the positive real

numbers.

Proof: We will prove the first one. Let , let such that  Im( .𝑇 =  𝑇* λ ∈ ℂ, λ) ≠ 0



Now, is real . So, now, when(𝑇𝑥,  𝑥) =  (𝑥, 𝑇* 𝑥) = (𝑥,  𝑇𝑥) = (𝑇𝑥,  𝑥) ⇒ (𝑇𝑥,  𝑥) ∀𝑥 ∈ 𝐻

you look at ((𝑇 − λ 𝐼) 𝑥,  𝑥) =(𝑇𝑥,  𝑥) − λ(𝑥,  𝑥) 

Im ((𝑇 − λ 𝐼) 𝑥,  𝑥) =  𝐼𝑚(λ) ||𝑥||2
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Therefore, , i.e.|𝐼𝑚 (λ)| ||𝑥||2 ≤  |((𝑇 − λ 𝐼) 𝑥,  𝑥)| ≤ ||(𝑇 − λ𝐼)𝑥|| ||𝑥||

Similarly, we have||(𝑇 − λ𝐼)𝑥|| ≥ |𝐼𝑚 (λ)| ||𝑥||  .   ||(𝑇 − λ𝐼)𝑥|| ≥ |𝐼𝑚 (λ)| ||𝑥||.  

So, when you have an operator which is bounded below, we have seen that it has closed range

because if you take any sequence in the image which converges, then this will be Cauchy,

which implies that is also Cauchy, so will converge and so the image limit will be in{𝑥
𝑛
} {𝑥

𝑛
}

the image. So, any operator which is bounded below has always closed range. This implies

that , have closed range and both 1-1. So, then we have the ,(𝑇 − λ𝐼) (𝑇 − λ𝐼) (𝑇 − λ𝐼)

are both invertible, by the lemma which I just proved. And therefore,(𝑇 − λ𝐼) λ ∈ ρ(𝑇).

So, , this implies that , i.e. .𝐼𝑚 (λ) ≠ 0 σ(𝑇) ⊆ {λ ∈ ℂ / 𝐼𝑚(λ) = 0} σ(𝑇) ⊆ ℝ

So, that proves the first relationship.
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2. Now we have . So, if you take So, these𝑇 𝑇* =  𝑇* 𝑇 =  𝐼 ||𝑥||2 = (𝑇* 𝑇 𝑥,  𝑥) = ||𝑇 𝑥||2.

are all isometries, any unitary operator gives you an isometry namely ||𝑇 𝑥|| = ||𝑥||,

and also , for the same reason. Instead of you took , you   ||𝑇 𝑥|| = ||𝑥|| = ||𝑇* 𝑥|| 𝑇 𝑇* 𝑇*𝑇

would have got the same thing. so you have .

Now, let us take . Then you take but|λ| ≠ 1 ||𝑇 𝑥 − λ 𝑥|| ≥  | ||𝑇 𝑥|| −  |λ| ||𝑥|| |

So, ||𝑇 𝑥|| = ||𝑥||. ||𝑇 𝑥 − λ 𝑥|| ≥  | ||𝑇 𝑥|| −  |λ| ||𝑥|| | = |1 − |λ| | ||𝑥||.

And similarly, .||𝑇 𝑥 − λ‾  𝑥|| ≥ |1 − |λ| | ||𝑥||



Remark. , is nothing but . So, once again , have𝑇* − λ‾ 𝐼 (𝑇 − λ 𝐼)* (𝑇 − λ 𝐼) (𝑇 − λ 𝐼)*

closed range and 1-1, so implies invertible, implise, .λ ∈ ρ(𝑇)
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And therefore, you have σ(𝑇) ⊆ {λ ∈ ℂ / |λ| = 1}

3. Given that . And of course, we have seen that this implies ,(𝑇𝑥,  𝑥) ≥ 0,  ∀𝑥 ∈ 𝐻 𝑇 =  𝑇*

therefore . Let us take . Then . Cauchy Schwarzσ(𝑇) ⊆ ℝ λ > 0  (𝑇 + λ𝐼)𝑥,  𝑥( ) ≥  λ ||𝑥||2

inequality . Therefore,⇒ λ ||𝑥||2  ≤ || (𝑇 + λ 𝐼)𝑥 || ||𝑥|| 

because is real, and is|| (𝑇 + λ 𝐼)𝑥 || ≥  λ ||𝑥|| . (𝑇 + λ 𝐼)* =  (𝑇 + λ 𝐼) λ 𝑇

self-adjoint. Therefore, this implies that has a closed range. So, has closed range𝑇 (𝑇 + λ 𝐼)

and it is 1-1. So, this implies is invertible. is nothing but(𝑇 + λ 𝐼) (𝑇 + λ 𝐼)

. And therefore, for every positive, , i.e., negative implies(𝑇 − (− λ) 𝐼) λ − λ ∈ ρ(𝑇) λ 

and therefore, this tells you that . So, with this, we will wind upλ ∈ ρ(𝑇) σ(𝑇) ⊂ [0,  ∞)

this chapter and then do some exercises next.


