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We will now discuss a very important topic in functional analysis namely Spectrum of an

Operator. You would have already heard of this word from linear algebra where given a matrix

its spectrum is the set of all Eigenvalues. So we generalize this notion. So we will briefly go back

to Banach spaces. And now we will work with the complex field as the basis so Banach over𝑉 ℂ

and . So it is a continuous linear operator on .𝑇 ∈ 𝐿(𝑉) 𝑉

So we have a definition the spectrum of is not invertible }. The𝑇 σ(𝑇) = {λ ∈ ℂ/ 𝑇 − λ𝐼 

resolvement of denoted by , is defined as the complement of . So𝑇, ρ(𝑇) σ(𝑇) ρ(𝑇) =

is invertible}. So we want to study the properties of the spectrum of aσ(𝑇) = {λ ∈ ℂ/ 𝑇 − λ𝐼 

given operator.



Suppose and then we know that, we have shown this in an exercise,𝑇 ∈ 𝐿(𝑉) ||𝑇|| < 1

exists. And in fact we have shown that is nothing but(𝐼 − 𝑇)−1 (𝐼 − 𝑇)−1

is the infinite series. If you now take the norm of this so you get𝐼 + 𝑇 + 𝑇2 +.  .  .  + 𝑇𝑛 +.  .  .

That is a geometric series with the which is1 + ||𝑇|| + ||𝑇||2 +.  .  .  + ||𝑇||𝑛 +.  .  . ||𝑇|| < 1

convergent and so that immediately tells you that .||(𝐼 − 𝑇)−1|| ≤ 1
1−||𝑇||
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So you also recall something else which we have done. So let us take invertible and𝑇 𝑆 ∈ 𝐿(𝑉)

such that . Then look at ,||𝑆|| <  1

||𝑇−1||
𝑇 − 𝑆 = 𝑇(𝐼 − 𝑇−1 𝑆) ||𝑇−1𝑆|| ≤  ||𝑇−1|| ||𝑆|| < 1.

is invertible and is also invertible implies is invertible. So from this we𝑇 (𝐼 − 𝑇−1 𝑆) 𝑇 − 𝑆

saw that invertible operators in form an open set. So if that means ) is𝐿(𝑉) λ ∈ ρ(𝑇) (𝑇 − λ𝐼

invertible then this implies that for sufficiently small. Because invertibleλ + δ ∈ ρ(𝑇) δ

operators form an open set. So this implies that is open implies is closed.ρ(𝑇) ⊂ ℂ σ(𝑇) ⊂ ℂ

So the spectrum is a closed set. Assume .|λ| >  ||𝑇||
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Then this can be written as . And Because(𝑇 − λ𝐼) − λ(𝐼 − λ−1𝑇) ||λ−1𝑇|| = |λ−1| ||𝑇|| < 1

. So this again becomes invertible. Therefore, . So||𝑇|| < |λ| |λ| > ||𝑇|| ⇒ λ ∈ ρ(𝑇)

, and therefore . So it is a closed set. Soλ ∈ σ(𝑇) ⇒ |λ| ≤ ||𝑇||  σ(𝑇) ⊆ {λ ∈ ℂ / |λ| ≤ ||𝑇||}

is closed and bounded that is is compact. So the spectrum is a compact subset of theσ(𝑇) σ(𝑇)

complex plane.
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Definition. closed ball center 0 radius, in ℂ. And then you consider𝐵‾(0,  𝑟) =  𝑟

Then is called the spectral radius of . And then𝑟(𝑇) = inf  {𝑟 > 0/ σ(𝑇) ⊂ 𝐵‾(0,  𝑟)}  . 𝑟(𝑇) 𝑇

of course you know that is less than or equal to . Now we want to show that the𝑟(𝑇) ||𝑇||

spectrum is in fact a compact set but it is a non-empty compact set. So the elements always exist

in this spectrum.

Let and then you define .Now you can writeλ ∈ ρ(𝑇) 𝑇(λ) = (𝑇 − λ𝐼)−1

. If , , this means that is𝑇(λ) = λ−1( 1
λ 𝑇 − 𝐼)−1 |λ| ≥ ||𝑇|| ||𝑇(λ)|| ≤ 1

|λ|
1

1− ||𝑇||
λ

  ||𝑇(λ)||

bounded and tends to 0 as . So this is an observation which we are making.λ → ∞
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Now let and . Soλ µ ∈  ρ(𝑇) 𝑇(λ) = 𝑇(λ)(𝑇 − µ𝐼)𝑇(µ) = 𝑇(λ)(𝑇 − λ𝐼 + (λ − µ)𝐼)𝑇(µ)

= (𝐼 + (λ − µ) 𝑇(λ)) 𝑇(µ)

This is called the resolvement equation.⇒  𝑇(λ) − 𝑇(µ) =  (λ − µ) 𝑇(λ) 𝑇(µ)

Now let be a continuous functional on so . Define𝑓 𝐿(𝑉) 𝑓 ∈ 𝐿(𝑉)*

. So it is defined on an open subset of the complex plane andϕ(λ) = 𝑓(𝑇(λ))   𝑓𝑜𝑟  λ ∈ ρ(𝑇)

then . We saw that is already is a bounded thing and in fact it|ϕ(λ)| ≤ ||𝑓|| ||𝑇(λ)|| ||𝑇(λ)||

goes to 0 as because of relationship. Therefore you have thatλ → ∞ ||𝑇(λ)|| ≤ 1
|λ|

1
1− ||𝑇||

λ

is bounded and it goes to 0 as . Further, if you take .ϕ(λ) = 𝑓(𝑇(λ))   |λ| → ∞
λ µ
lim
→

ϕ(λ)−ϕ(µ)
λ−µ

What do you get? from the resolvement equation this is nothing but .𝑓(𝑇(µ)2)

, as therefore that goes to . That meansϕ(𝑇(λ))−ϕ(𝑇(µ))
λ−µ = ϕ(𝑇(λ)𝑇(µ)) λ →  µ 𝑓(𝑇(µ)2) ϕ

defined on is differentiable at each point of . It is bounded and tends to 0 as .ρ(𝑇) ρ(𝑇) |λ| → ∞
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Now we can get a nice contradiction. If is empty , this will imply that and thisσ(𝑇) ρ(𝑇) = ℂ

will imply that is an entire function which is bounded and by Luwill’s theorem this means thatϕ

is a constant. But as . And therefore this implies is identically zero. Butϕ ϕ(λ) → 0 λ → ∞ ϕ

that is absurd because phi is identically 0 and is true for any but the dual𝑓(𝑇) λ = 0 𝑓 ∈ 𝐿(𝑉)*

separates points. So this implies that and that is a contradiction is the inverse of an𝑇 λ = 0 𝑇 λ

operator; it cannot be the 0 operator. So this proves so this implies that is a non-emptyσ(𝑇)

compact subset of .ℂ

Remark is important, for instance, if you took only ℝ then look atℂ

0       -1

1        0

Then what are the eigenvalues? So the characteristic polynomial is . So areλ2 + 1 = 0 λ =± 𝑖

the only eigenvalues and they are not real. And therefore is empty. So the spectrumσ(𝑇) ⊂ ℝ

could be empty if you are stuck to the real field and that is why the spectrum to be non-empty,

you need to work with the complex sample. So that is the important thing. So now we want to

see what the spectrum looks like.
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Definition Banach and and . So is called an eigenvalue if the null𝑉 𝑇 ∈ 𝐿(𝑉) λ ∈ σ(𝑇) λ 

space of is not equal to . That means and if , we say is an(𝑇 − λ𝐼) {0} 𝑢 ≠ 0 𝑢 ∈ 𝑁(𝑇 − λ𝐼) 𝑢

eigenvector of corresponding to the eigenvalue and the dimension of is called the𝑇 λ 𝑁(𝑇 − λ𝐼)

geometric multiplicity of the eigenvalue . There is something else called algebraic multiplicityλ

which we can discuss.
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So now let us briefly recall a theorem which we have done before.



Recall Banach and . , . Then we also𝑉,  𝑊 𝐴 ∈ 𝐿(𝑉,  𝑊) 𝑁(𝐴) = 𝑅(𝐴*) 𝑁(𝐴*) = 𝑅(𝐴)⊥

showed that the following are equivalent,

● is closed,𝑅(𝐴) 

● is closed𝑅(𝐴*)

● 𝑅(𝐴) = 𝑁(𝐴*)⊥

● 𝑅(𝐴*) = 𝑁(𝐴)⊥

We also showed the following theorem that the following are equivalent,

● onto that means .𝐴  𝑅(𝐴) =  𝑊

● Then there exists a such that𝑐 > 0 ||𝐴* ϕ|| ≥ 𝑐||ϕ||,   ∀ϕ ∈ 𝑊*

● is 1-1 and is closed.𝐴* 𝑅(𝐴*)

Similar theorem for , with replacing , replacing , you have an identical theorem that𝐴* 𝐴* 𝐴 𝐴 𝐴*

the left is an exercise to this. So we approved all these things.

Now let us say is 1-1, onto and of course it is continuous and therefore is an isomorphism.𝐴 𝐴

So then is 1-1 and closed this implies 1-1, is closed. And is nothing but𝐴 𝑅(𝐴) 𝐴* 𝑅(𝐴*) 𝑅(𝐴*)

that is . So is onto. So A is onto therefore you have that so this𝑁(𝐴)⊥𝑁(𝐴) = {0} {0}⊥ = 𝑊* 𝐴*

implies that 1-1, onto and continuous of course. And therefore it is also an isomorphism.𝐴*

Conversely 1-1 onto. So this will imply that is onto therefore is 1-1 and closed. And𝐴* 𝐴* 𝑅(𝐴)

you have . So this implies is 1-1, onto if and only is 1-1, onto.𝑅(𝐴) = 𝑁(𝐴*)⊥ = {0}⊥ = 𝑊 𝐴 𝐴*

So this is a thing which we want to remember.
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Proposition. Hilbert space so we are now in the Hilbert space . And if𝐻 𝑇 ∈ 𝐿(𝐻) λ ∈ σ(𝑇)

and only if . So . So is invertible if and only ifλ‾ ∈ σ(𝑇*) (𝑇 − λ𝐼)* = (𝑇* − λ‾ 𝐼)  (𝑇* − λ‾ 𝐼)

is invertible. And therefore if and only if . and are the(𝑇 − λ𝐼) λ ∈ σ(𝑇) λ‾ ∈ σ(𝑇*) ρ(𝑇) σ(𝑇)

complements of each other.

So let us take an example.

Let . So you consider the map . This is the shift operator we have𝑉 = 𝑙
2

𝑥↦ 𝑆𝑥 = (𝑥
2
,  𝑥

3
,  .  .  .)

already seen. Where . So . But in fact if you take𝑥 = (𝑥
1
,  𝑥

2
,  .  .  .) ||𝑆 𝑥||

2
≤ ||𝑥||

2
⇒ ||𝑆|| ≤ 1

or , for instance, and then the shift will be if it is . And therefore .𝑒
2

𝑒
3

𝑒
1

𝑒
2

||𝑆 𝑥|| = ||𝑥||

Therefore, . So this means . Now you take then||𝑆|| = 1 σ(𝑆) ⊂ {λ / |λ| ≤ 1} λ = 0

, is an eigenvector and is an eigenvalue.𝑆(𝑒
1
) = 0 𝑒

1
λ = 0
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Now let and then you consider if possible let us see if we can find thisλ ≠ 0  𝑆𝑥 𝑆𝑥 = λ 𝑥

implies for all , so inductively this will give you . But that𝑖 ≥  1 𝑥
𝑖+1

= λ 𝑥
𝑖

λ𝑖−1 𝑥
1

𝑥 ∈ 𝑙
2

means . Therefore, this implies that has to be strictly less than 1. In fact, let𝑥
𝑖
 →  0 |λ| |λ| < 1

and consider . Now then because you have a geometric series𝑥 = (1,  λ,  λ2,.  .  .) 𝑥 ∈ 𝑙
2

|λ| < 1

for the norm. So that is fine. So and if you take .𝑥 ∈ 𝑙
2

𝑆𝑥 = λ 𝑥
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So every such that whether it is zero or nonzero is an eigenvector. Therefore,λ |λ| < 1

and and therefore this implies thatσ(𝑆) ⊃ {λ / |λ| < 1} σ(𝑆) ⊂ {λ / |λ| ≤ 1}

. And but it is not an eigenvalue. So the spectrumσ(𝑆) ⊂ {λ / |λ| = 1} |λ| = 1 ⇒ λ ∈ σ(𝑆)

contains a whole continuum of points unlike the finite dimensional case where the spectrum

consists only of Eigenvalues. And they were n discrete depending on the dimension. Whereas

here you have a spectrum of this operator which is a whole continuum of points in the complex

plane the entire disk close disk and in that you have uncountably many eigenvalues and

uncountably many members of the spectrum which are not eigenvalues. So every member in the

interior of the disk is an eigenvalue, every member in the boundary is not an eigenvalue. Now

you define . Then we have already seen this before so check again𝑇𝑥 = (0,  𝑥
1
,  𝑥

2
,  .  .  ) 𝑇* = 𝑆

and . You can check this. So is called the left shift and is called the right shift. So𝑆* =  𝑇 𝑆 𝑇

now by a previous proposition if is in the spectrum of 1 of them bar should be in theλ λ‾

spectrum of other.

Now closed unit ball in the complex plane is symmetric with respect to conjugation. Therefore,

also has to be set . So we just deduce it directly from the previous. We do notσ(𝑇) {λ / |λ| ≤ 1}

have to do anything.
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Now if you take . So then what happens? , and so on. If𝑇𝑥 = λ 𝑥 0 = λ 𝑥
1

𝑥
1

= λ 𝑥
2

λ ≠ 0

this implies . Therefore, is not an eigenvalue. Again, is also not an𝑥
𝑖

= 0,   ∀ 𝑖 λ ≠ 0 λ = 0

eigenvalue because is an injective map. Therefore, it cannot have any nonzero vector going to𝑇

0. And therefore no eigenvalues for . So, you have a spectrum which is a fully closed unit ball𝑇

but not a single eigenvalue for this one. So, we have that the spectrum can behave really

strangely because in the finite dimensions 1-1 if and only if onto and that is equivalent to

invertibility. In infinite dimensions invertibility may fail in many ways, it may be 1-1, it may not

be 1-1, it may not be onto etc. So that is why you have the spectrum interesting. So, we will

continue with this.


