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Theorem. (Hilbert theorem) A Hilbert space has a countable orthonormal basis if and only if it is

separable.

Proof. ( ) Existence of a countable orthonormal basis is equivalent to saying the space is⇒

separable though this way separable Hilbert spaces are very important and almost every Hilbert

space which we come across in applications is separable. So we will prove this way. So it has a

countable orthonormal basis. Let be an orthonormal basis. Therefore, we just proved{𝑒
𝑛
}

𝑛=1

∞

that the span of is dense in the Hilbert space. Now that means every so ,{𝑒
𝑛
  / 𝑛 ∈ ℕ} 𝑥 ∈  𝐻

then can be approximated as closely as we wish by finite linear combination of and hence𝑥 {𝑒
𝑛
}

by finite rational linear combinations that means every can be approximated as close as𝑥



possible . If we are in a real Hilbert space we can take is to be rational, if it is a∑ α
𝑖
 𝑒

𝑖
α

𝑖

complex Hilbert space we can take the real and imaginary parts of the to be rational. Andα
𝑖

these rational combinations of the form a countable set. So rational linear combinations of{𝑒
𝑛
}

is countable and is dense in and therefore is separable.{𝑒
𝑛
} 𝐻 𝐻

Conversely let us assume that is separable. So we have is a countable dense set.𝐻 {𝑥
𝑛
}

𝑛=1

∞

Let be an orthonormal basis and let us assume infinite because if it is finite, we{𝑒
𝑖
  / 𝑖 ∈ 𝐼} 𝐼

have nothing to say. Therefore I use an infinite set. And now we have the if||𝑒
𝑖

− 𝑒
𝑗
||2 = 2,  

And therefore, if you take the ball, . Then for these are all mutually𝑖 ≠  𝑗. {𝐵(𝑒
𝑖
,  2

4 )}
𝑖 ∈ 𝐼

𝑖 ∈  𝐼

disjoint but then these are all open balls.
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So each ball must contain at least one and each can belong to at most one of such balls.𝑥
𝑛

𝑥
𝑛

Because the balls are all disjoint. You cannot have a common element in 2 of them. So since ’s𝑥
𝑛

are countable so this means so every ball must contain the only countable number of these. And



therefore, is countable. So countably infinite and therefore has a countable orthonormal𝐼 𝐻

basis.
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Example 1. If you have then you take to be the standard basis. This means 1 in the i-th𝑙
2
𝑛 {𝑒

𝑖
}

place and 0 elsewhere. So this is an orthonormal basis for . Because are all of norm 1 ,𝑙
2
𝑛 𝑒

𝑖
'𝑠 𝑒

𝑖

and are orthogonal to each other and any can be written uniquely in terms of the and𝑒
𝑗

𝑥 𝑒
𝑖

therefore this forms a basis. And it is therefore a maximal linearly independent set. Therefore, its

maximum is not the normal set as well.

, this is an orthonormal basis of . Because if you have , then𝑙
2

{𝑒
𝑛
}

𝑛=1

∞ 𝑙
2

𝑥 = (𝑥
1
,  .  .  .,  𝑥

𝑛
,  .  .  .)

. And converges to in . And therefore, all𝑥(𝑛) =
𝑖=1

𝑛

∑ 𝑥
𝑖
 𝑒

𝑖
=  (𝑥

1
,  .  .  .,  𝑥

𝑛
,  0,  0,  .  .  .) 𝑥(𝑛) 𝑥 𝑙

2

linear combinations are dense. By an earlier corollary we have that is a complete{𝑒
𝑛
}

𝑛=1

∞

orthonormal set. And therefore it is an orthonormal basis.



Example 2. Fourier series. Let us consider . Consider the set𝐿2(− π,  π)

. So what is , and ,𝐸 = {𝑓
0
} ⋃{𝑓

𝑛
,  𝑔

𝑛
/𝑛 ∈ ℕ} 𝑓

0
(𝑡) = 1

2π 
𝑓

𝑛
(𝑡) = cos 𝑛𝑡

π 
𝑔

𝑛
(𝑡) = sin 𝑛𝑡

π 

. So this is an orthonormal set. It is clear to see, you can very easily check that all𝑡 ∈ [− π,  π]

these things have norm 1 and that they are all orthogonal to each other. So this is an orthonormal

set.
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Now continuous functions with compact support in are dense in . Because(− π,  π) 𝐿2(− π,  π)

they have compact support, you have such functions , thenϕ ∈  𝐶
𝑐
(− π,  π)

so is automatically periodic. Then span is dense in continuousϕ(− π) = ϕ(π ) = 0 ϕ 2π 𝐸

periodic functions on and in the uniform topology (i.e., ). That means every2π [− π,  π] ||. ||
∞

continuous periodic function can be uniformly approximated by means of a function in the2π

span of . This is nothing but the Stone Weierstrass theorem (this a theorem in analysis). And𝐸

since we have has finite measure. So this implies that span of E is also dense in[− π,  π]

and hence in in the -norm. Because if it is in the norms it is a𝐶
𝑐
(− π,  π) 𝐿2(− π,  π) ||. ||

2
 𝑙∞

finite measure is continuously embedded in the . And therefore it is true in this, therefore the𝑙∞ 𝑙2

span is dense. So this implies is an orthonormal basis for . So we have proved the𝐸 𝐿2(− π,  π)

completeness. So this is an example of an orthonormal basis in .𝑙
2
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So that means what do you have, if . You can write𝑓 ∈ 𝐿2(− π,  π)

𝑓(𝑡) =
−π

π

∫ 𝑓(𝑡) 1
2π

𝑑𝑡( ) 1
2π

 +  
𝑛=1

∞

∑  
−π

π

∫ 𝑓(𝑡) cos 𝑛𝑡
π

𝑑𝑡( ) cos 𝑛𝑡
π

+  
𝑛=1

∞

∑  
−π

π

∫ 𝑓(𝑡) sin 𝑛𝑡
π

𝑑𝑡( ) sin 𝑛𝑡
π

So, we can rewrite this as ,𝑓(𝑡) =
𝑎

0

2 +  
𝑛=1

∞

∑ (𝑎
𝑛
 cos  𝑛𝑡 +  𝑏

𝑛
 sin  𝑛𝑡)

where , , .𝑎
0
 =  1

π
−π

π

∫ 𝑓(𝑡) 𝑑𝑡 𝑎
𝑛
 =  1

π
−π

π

∫ 𝑓(𝑡) cos  𝑛𝑡 𝑑𝑡 𝑏
𝑛
 =  1

π
−π

π

∫ 𝑓(𝑡) sin  𝑛𝑡 𝑑𝑡

This is the classical Fourier series, you have already seen in the connection with the uniform

boundedness principle.
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So we call as the Fourier coefficients. What does it mean if you have𝑎
0
,  {𝑎

𝑛
,   𝑏

𝑛
}

𝑛=1

∞

.   Then in .𝑓
𝑁

(𝑡) =
𝑎

0

2 +  
𝑛=1

𝑁

∑ (𝑎
𝑛
 cos  𝑛𝑡 +  𝑏

𝑛
 sin  𝑛𝑡) 𝑓

𝑁
→ 𝑓 𝐿2(− π,  π)

i.e., . So in this sense it converges. So, we have seen the uniform
𝑁 ∞
lim
→

 
−π

π

∫ |𝑓
𝑁

− 𝑓|2𝑑𝑡 = 0

bounded principle that point wise convergence even for continuous functions is not guaranteed.

Whereas in the norm the Fourier series always converges to the corresponding function𝑙
2

.𝐿2(− π,  π)

(Refer Slide Time: 15:43)



And if you take Parseval's identity . So that is1
π

−π

π

∫ |𝑓(𝑡)|2𝑑𝑡 =  
𝑎

0
2

2 +  
𝑛=1

∞

∑ (|𝑎
𝑛
|2 + |𝑏

𝑛
|2)

given by the sum of the squares of the inner product with the Fourier coefficients. So that is

Parseval’s identity. So this is how it will work out for the Fourier series. So you have in fact 𝑎
𝑛

should all go to 0 because of this condition.𝑏
𝑛

Example ( Fourier sine series). So let us take now ,  so this is our Hilbert space.𝐿2(0,  π)

Then you look at the set . It is easy to check this is an𝐸 = 2
π  sin  𝑛𝑡  / 𝑛 ∈ ℕ

⎰
⎱

⎱
⎰

orthonormal set in . So each one has norm 1 and they are all orthogonal to each other.𝐿2(0,  π)

So now we want to show that this is in fact complete. Let such that𝑓 ∈ 𝐿2(0,  π)

That means the inner product with functions in are all 0.
−π

π

∫ 𝑓(𝑡) sin  𝑛𝑡 𝑑𝑡 = 0,   ∀𝑛 ∈  ℕ. 𝐸

We will then show that is identically 0. And therefore, by one of the characterizations we know𝑓

that this is a complete orthonormal set.
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Now extend as an odd function to , i.e., So in the negative𝑓 [− π,  π] 𝑓(− 𝑡) =− 𝑓(𝑡),   𝑡 > 0.

range you define it is . So then this is an odd function. Of course this new function− 𝑓(𝑡)

. Now what about . is an odd function as𝑓 ∈ 𝐿2(− π,  π) 
−π

π

∫ 𝑓(𝑡) cos  𝑛𝑡 𝑑𝑡 𝑓(𝑡) cos  𝑛𝑡 cos  

is an even function, the product is an odd function and an odd function on the symmetric interval

will have integral 0 and so = 0. And then as is an odd
−π

π

∫ 𝑓(𝑡) cos  𝑛𝑡 𝑑𝑡
−π

π

∫ 𝑓(𝑡) 𝑑𝑡 = 0 𝑓

function. Now what about . Now because both of and are odd so the
−π

π

∫ 𝑓(𝑡) sin  𝑛𝑡 𝑑𝑡 sin 𝑓(𝑡)

product is an even function. So,
−π

π

∫ 𝑓(𝑡) sin  𝑛𝑡 𝑑𝑡 = 2
0

π

∫ 𝑓(𝑡) sin  𝑛𝑡 𝑑𝑡 =  0 

given.
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So the inner product of with all the and the constant function is 0. So since𝑓 sin  𝑛𝑡,   cos  𝑛𝑡

we know that these functions form a complete orthonormal set on . So this implies that[− π,  π]

on . Therefore, on also. And therefore is an complete𝑓 = 0 [− π,  π] 𝑓 = 0 [0,  π] 𝐸

orthonormal basis for . That means any then you can write𝐿2(0,  π) 𝑓 ∈ 𝐿2(0,  π)

. And this will converge in the sense of and this is called the Fourier sine𝑓(𝑡) =
𝑛=1

∞

∑ 𝑏
𝑛 

sin  𝑛𝑡 𝑙
2

series of any function in space.
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is separable Hilbert space and is an orthonormal basis or complete orthonormal set.𝐻 {𝑒
𝑛
}

𝑛=1

∞

Then we know any can be written as This is called the Fourier series𝑥 ∈ 𝐻 𝑥 =
𝑛=1

∞

∑ (𝑥,  𝑒
𝑛
)𝑒

𝑛
.

for and you call are the Fourier coefficients. Now since we can write like this so is in𝑥 (𝑥,  𝑒
𝑛
) 𝑥

fact The set is called a Schauder basis. So, we have two kinds𝑥 =
𝑁 ∞
lim
→ 𝑛=1

𝑁

∑ (𝑥,  𝑒
𝑛
)𝑒

𝑛
. {𝑒

𝑛
}

𝑛=1

∞

of basis, we have the Hamel basis. This is a algebraic basis that means every is a finite𝑥 ∈ 𝐻

linear combination of basis elements. So this is the basis as we know it. A Schauder basis is a

sequence . a countable set and given any can be written as{𝑥
2
, 𝑥

2
,  .  .  .,  𝑥

𝑛
,  .  .  .} 𝑥

If you can write it like this then we say it is Schauder basis.𝑥 =
𝑛 ∞
lim
→ 𝑖=1

𝑛

∑ α
𝑖
𝑥

𝑖
.
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So, this definition holds in any Banach space and so every separable Hilbert space. So every

separable Hilbert space has a Schauder basis in the orthonormal basis. Now if you look at . So𝑙
𝑝

again if you took a look at the sequences These are the sequences with 1 in n-th place{𝑒
𝑛
}

𝑛=1

∞ .

and 0 in all other corners. So this forms a Schauder basis for it is not true in .𝑙
𝑝
,  1 ≤ 𝑝 < ∞ 𝑙

∞

So it also forms a Schauder basis in , for instance, and we have used these properties before.𝐶
0


