Functional Analysis
Professor S Kesavan
Department of Mathematics
The Institute of Mathematical Sciences
Lecture No. 57
Fourier series
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Theorem. (Hilbert theorem) A Hilbert space has a countable orthonormal basis if and only if it is

separable.

Proof. (=) Existence of a countable orthonormal basis is equivalent to saying the space is
separable though this way separable Hilbert spaces are very important and almost every Hilbert

space which we come across in applications is separable. So we will prove this way. So it has a

countable orthonormal basis. Let {en}oo be an orthonormal basis. Therefore, we just proved
n=1

that the span of {en /n € N} is dense in the Hilbert space. Now that means every so x € H,
then x can be approximated as closely as we wish by finite linear combination of {en} and hence

by finite rational linear combinations that means every x can be approximated as close as



possible ) ae. If we are in a real Hilbert space we can take a is to be rational, if it is a

complex Hilbert space we can take the real and imaginary parts of the a. to be rational. And
these rational combinations of the {en} form a countable set. So rational linear combinations of

{en} is countable and is dense in H and therefore H is separable.

Conversely let us assume that H is separable. So we have {xn}oo is a countable dense set.
n=1

Let {ei / i € I} be an orthonormal basis and let us assume [ infinite because if it is finite, we

: e 2 :
have nothing to say. Therefore I use an infinite set. And now we have the ||ei — ej|| =2, if

i # j. And therefore, if you take the ball, {B (ei, %)}i cr Then for i € [ these are all mutually

disjoint but then these are all open balls.
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So each ball must contain at least one x and each X can belong to at most one of such balls.
Because the balls are all disjoint. You cannot have a common element in 2 of them. So since xn’s

are countable so this means so every ball must contain the only countable number of these. And



therefore, I is countable. So countably infinite and therefore H has a countable orthonormal

basis.
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Example 1. If you have l: then you take {ei} to be the standard basis. This means 1 in the i-th

place and 0 elsewhere. So this is an orthonormal basis for l;l. Because ei's are all of norm 1, e,
and e; are orthogonal to each other and any x can be written uniquely in terms of the e, and

therefore this forms a basis. And it is therefore a maximal linearly independent set. Therefore, its

maximum is not the normal set as well.

lz’ {en}oo this is an orthonormal basis of lz' Because if you have x = (xl, Cew X .), then
n=1

n
x(n) =Y xe = (xl, S 0,0 .... And x(n) converges to x in lz' And therefore, all

linear combinations are dense. By an earlier corollary we have that {en}Oo is a complete
n=1

orthonormal set. And therefore it is an orthonormal basis.



: : . 2 :
Example 2. Fourier series. Let wus consider L (— m m). Consider the set

E={f}U{f, g /n €N} So what is f (t) = ﬁ, f.® =%nnt and g (t) = si\r/lEnt’

t € [— m, m]. So this is an orthonormal set. It is clear to see, you can very easily check that all

these things have norm 1 and that they are all orthogonal to each other. So this is an orthonormal

set.
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Now continuous functions with compact support in (— m, ) are dense in L (— T, m). Because

they have compact support, you have such functions ¢ € CC(— m, 1) , then

d(— m) = d(w) = 0 so ¢ is automatically 21 periodic. Then span E is dense in continuous

2 periodic functions on [— , ] and in the uniform topology (i.e., || || ). That means every

continuous 27 periodic function can be uniformly approximated by means of a function in the
span of E. This is nothing but the Stone Weierstrass theorem (this a theorem in analysis). And

since we have [— m, ] has finite measure. So this implies that span of E is also dense in

CC(— 1, ) and hence in L (— m, m) in the ||. ||2 -norm. Because if it is in the I norms it is a

. © . . . 2 .. . .
finite measure [ is continuously embedded in the [ . And therefore it is true in this, therefore the

span is dense. So this implies E is an orthonormal basis for LZ(— m, ). So we have proved the

completeness. So this is an example of an orthonormal basis in lz.
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So that means what do you have, if f € LZ(— T, T). You can write

_ 1 _1 S K cos nt \cosnt 2 sin nt \ in nt
f©) = (ff(t) dt)ﬁ + 3 (_fnf(t) L _fﬂf(t) e

n=1

a
So, we can rewrite this as  f(t) = 70 + ) (an cos nt + bn sin nt),
n=1

T T T
where a, = %f f(t) dt, a = %f f(t) cos nt dt, bn = %f f(t) sin ntdt.
—T —Tt —_

This is the classical Fourier series, you have already seen in the connection with the uniform

boundedness principle.
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So we call a, {an, bn}Oo as the Fourier coefficients. What does it mean if you have
n=1

N
f ==+ Y(a cosnt + b sinnt). Thenf —f inl’(~ m m).

n=1

T
. . 2 C . .
ie, lim [ | fN — f]dt = 0. So in this sense it converges. So, we have seen the uniform
N—o -7

bounded principle that point wise convergence even for continuous functions is not guaranteed.

Whereas in the [ , horm the Fourier series always converges to the corresponding function
2
L (— m m.
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And if you take Parseval's identity — [ |f()['dt = ==+ ¥ (la|"+ b |"). So that is
—Tt

2
n=1

given by the sum of the squares of the inner product with the Fourier coefficients. So that is

Parseval’s identity. So this is how it will work out for the Fourier series. So you have in fact a

bn should all go to 0 because of this condition.

Example ( Fourier sine series). So let us take now LZ(O, 1), so this is our Hilbert space.

Then you look at the set E = {« /% sinnt /n € N} . It is easy to check this is an

orthonormal set in LZ(O, ). So each one has norm 1 and they are all orthogonal to each other.

S 2
So now we want to show that this is in fact complete. Let f € L (0, ™) such that

T
[ f(t) sin ntdt = 0, Vvn € N. That means the inner product with functions in E are all 0.
-T

We will then show that f is identically 0. And therefore, by one of the characterizations we know

that this is a complete orthonormal set.
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Now extend f as an odd function to [— m, m], i.e., f(— t) =— f(t), t > 0. So in the negative

range you define it is — f(t). So then this is an odd function. Of course this new function
2 e

f € L°(— m, m). Now what about [ f(t) cos ntdt. f(t) cos ntis an odd function as cos
—T

is an even function, the product is an odd function and an odd function on the symmetric interval

T T
will have integral 0 and so [ f(t) cos ntdt = 0. And then | f(t)dt = 0 as f is an odd

—T —T

T
function. Now what about | f(t) sin nt dt . Now because both of sin and f(t) are odd so the

—TC

T T
product is an even function. So, [ f(t) sin ntdt = 2 f(t) sin ntdt = 0
—T 0

given.
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So the inner product of f with all the sin nt,

we know that these functions form a complete orthonormal set on [— m, Tt]. So this implies that

f =0 on

orthonormal basis for LZ(O, ).

[o0]

f(t) = ¥ b_sin nt. And this will

n=1

series of any function in space.
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That means any f € LZ(O, ) then you can write

converge in the sense of l2 and this is called the Fourier sine

cos nt and the constant function is 0. So since

[0, ] also. And therefore E is an complete
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H 1s separable Hilbert space and {en}Oo is an orthonormal basis or complete orthonormal set.
n=1

Then we know any x € H can be written as x = ). (x, en)en. This is called the Fourier series
n=1

for x and you call (x, en) are the Fourier coefficients. Now since we can write like this so x is in

N

fact x = lim ) (x, en)en. The set {en}00 is called a Schauder basis. So, we have two kinds
N— o n=1 n=1

of basis, we have the Hamel basis. This is a algebraic basis that means every x € H is a finite
linear combination of basis elements. So this is the basis as we know it. A Schauder basis is a

sequence {xz, Xpp oo Xy .J. a countable set and given any x can be written as

n

x = lim } X If you can write it like this then we say it is Schauder basis.
n—o =1
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So, this definition holds in any Banach space and so every separable Hilbert space. So every

separable Hilbert space has a Schauder basis in the orthonormal basis. Now if you look at lp. So

again if you took a look at the sequences {en}OO . These are the sequences with 1 in n-th place
n=1

and O in all other corners. So this forms a Schauder basis for lp, 1 < p < ooitisnot true in lOo .

So it also forms a Schauder basis in C 0 for instance, and we have used these properties before.



