Functional Analysis
Professor. S. Kesavan
Department of Mathematics
The Institute of Mathematical Sciences
Lecture No. 54
Orthonormal Sets
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We said that the distinguishing feature of Hilbert spaces over Banach spaces was the

orthogonality of vectors. And in fact, so far we have seen one important result that every closed

. .. 1.
subspace of a Hilbert space, due to the orthogonal decomposition M + M is complemented. So,
every closed subspace is complemented unlike a Banach space where it cannot happen. So, now,
it is time for us to study this orthogonality in a little more detail and so we come to the most

important section in this chapter.
Orthonormal Sets

Let H be a Hilbert space. Let I be an indexing set. It could be empty, it could be finite, it could be

countable, it could be uncountable. So, let S = {ui /i € I} c H

Definition. We say that the set S is orthonormal if Vi € [ ||ui|| = 1. That is the normal part.

Every vector is normalized. So, every vector has unit norm and whenever i # j, we have (ui,



ui)=0. So, they are all orthogonal to each other and they are all normalized vectors, namely, they

have norm equal to 1 and therefore, such a set is called orthonormal.

Remark. Vectors in an orthonormal set, I will write o n for orthonormal, so orthonormal sets are

n

linearly independent. So, if you have ), o U = 0, then you take any one U, 1<j<n,,so
i=1

n

2 .
you have ) a (ui, u],) =0= ajllujll =a asa (ui, uj) = 0V i # j. So, each o = 0 and
i=1

therefore, the vectors are linearly independent.

. 2 . .
Example. So, if you take ln or [ - Let me write separately the basis vectors.

e} is a basis of . {e }OO is a basis of [_. These are all sequences. 1 in the k-th place, 0
k k 2
k=0 " k=0

elsewhere, is an orthonormal set.
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Then, let us take X = [0, 1] with the Lebesgue measure. And then you look at LZ(O, 1). So, then

if you write fn(t) = \/E sin (nmt), then easy to check that {f n}:zl is an orthonormal set. So,



1 1
[ 2 sin’(nnt)dt = 2% =1 and if you have, if n # m, [sin(mnt) sin(nnt)dt = 0
0 0

because that will be defined as the difference of some cosines and then you integrate, you will
get 0. So, {fn}:;l is an example of orthonormal sets. So, now, we come to an important
proposition.

Proposition: (Gram-Schmidt Orthogonalisation.) Let H be a Hilbert space. Let {xl, X, xn}

be a set of linearly independent vectors. Then, there exists an orthonormal set {el, e, -, en} in

21

H such that forevery 1 < i < n, e, is a linear combination of {xl, X, xi}. So, you take X
then you get e Take {xl, xz}, you get e, which is a linear combination of xl& X, and so on.

So, you build progressively this orthonormal set. So, the span of {61’ e, en} is the same as

2’

the span of {xl, X, xn} because each e, is a linear combination of the X Xyt xn’s and

2

therefore, they span the same space. It is orthonormal so it is also linearly independent.

X
1

1,

Proof. X # OVi.So, x L F 0. So, you put e = So, this automatically is a vector which
is a unit vector.
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Now, you take e ,» SO you consider X, = (xz, e 1)e g Now, this vector is orthogonal to e %
Because if you take the inner product you get (xz, el) — (xz, el) (el, el) =0, as
(el, el) = 1. So, this is orthogonal to e And X, = (xz, el)e1 # 0 since X, X, are linearly
independent and this implies that e, and X, are also linearly independent. Because e, is just a
multiple of x g And here, you have a non-zero coefficient for x , SO this cannot be the 0 vector.

xz—(xz, el)e1

Therefore, I can divide by its norm. So, I define e, = —————.
2~ i, —Gpee,l

So again, e, is therefore
just a multiple of X, for the first one. So, e and e, are orthogonal to each other and e, is a linear
combination of x 5 and e ) and that means it is a linear combination of X, and x % Now, you

proceed by induction. So you assume, we have constructed {el, ey eki_l}, forl <k<n-1



k
— 'Z (xk+1, ei)ei. Now, this again,

So, we are going to define € . So, we now look at X0
i=1

cannot be 0 because it is a linear combination of X, and {el, e, ek}, but {61’ €, ek}, by

1 2’

induction hypothesis, are a linear combination of {x P Xy xk} so the whole thing is a linear

2’

combination of X Xyt X, and the coefficient of X1 is 1, which is not 0, so

k
xk+1 B E‘l(xkﬂ' ei)ei # 0.
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Therefore, I can now define € = - . Then, ”ek+ 1|| =1 and
”xk+1_i§l(xk+1’ e)ell

A L

(ek+1, ej) = 0, V1 < j < k. So, then, the induction hypothesis is complete and therefore you

can go on. So, this can be done for any n and you can construct the orthonormal base vectors.

Remark. Let us take (]RN, [- 1 2), that is, li. Then, you take {x b Xy xn} linearly independent

vectors in R". And then we apply the Gram-Schmidt process to give you {e p ey en} which



are orthonormal vectors. So, now, what, so we can, they span, for any i, {xl, X, xl,}and

2

{61’ €, ei}, so, Vi {xl, X, xi} and {el, €, ei} span the same subspace. So, let us
j

write x. = ) r_e. Now, let A be the matrix whose columns are xj. Q be the matrix whose
i ij i
i=1

columns are e And R be the matrix (rij), where you put Ty 0, ifi>].
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Then, A is invertible because the columns of the matrix are linearly independent. Now, Q is a

matrix whose columns are all orthogonal to each other and therefore matrix Q is orthogonal.

T T - o .

Q Q = Q Q = I. Because that is just the definition of an orthogonal matrix so the columns of
J

the orthogonal matrix are orthogonal vectors. And therefore, x = ) i€ is the same as
i=1

A = QR. This is a theorem in matrix theory which we have proved. Every non singular matrix

can be written in the form QR, Q orthogonal and R upper triangle. Namely, R is a matrix where

below the diagonal everything is 0. So, this is a theorem in matrix theory which we have now

proved using the Gram-Schmidt Orthogonalisation process.
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So, what is the use of these orthogonal matrices? They are very useful. So, let us give an

example. So, you have a function.

Example. Suppose I have a continuous function f: [0, 1] = R. Then we want to approximate it
by a polynomial. There are various ways, Lagrange interpolation is one way. Another method is

least squares approximation. What is a least squares approximation?

You look for a polynomial P(t) of degree, let us say < n such that

1 1
[1f(®) = P(O)|’dt = min [1f(®) = QI dt. Where, so what is this? g is this polynomials
0 &0, 0

of degree < n. So, this is a subspace of continuous functions of dim (n + 1). We are going to

look in the space LZ(O, 1) because we are taking integrals here and here. So, LZ(O, 1) is a Hilbert
space. You have finite dimensional subspace therefore, it is a closed subspace. Then we know
that you can always find a proximinial point, that means there exists a unique polynomial P
which satisfies this condition and P is called the least square approximation of f. Now, how do
we do this? So, this polynomial P, what is it characterized by? So, this characterization is,

(P,Q) = (f,Q) vQ € # . So, P is characterized by these equations, namely the inner

product; we have seen this when proving the Lax-Milgram Lemma, even before that. So, now,

since this is a linear space and this is a linear relationship in P and Q, therefore it is enough to



check it only for the basis elements. So, basis of gon, standard basis are the functions

{PO, P Pn}where Po(t) =1, Pi(t) = ti, Ii<n,sofl,t tz',...} forms a basis.

n
So, if you take the polynomial P(t)=oc0 +ot + ot antn. So, P(t) = ), (xiPi(t).
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So, then if you substitute that in equation (P, Q) = (f, Q),, you will get following linear

n

system. So, you substitute here. So, we are going to write, (), @ Pj, Pl,) = (f, Pi) for
j=0

1 < i < n. So, this gives you n + 1 linear equations in n + 1 unknowns 0 O, ey O So,

once you find the a’s you know P and therefore, you have found the P Now, what is this thing?
This can be written as Ax = F, where A = (a ) a, (P P) And X is a vector

X ={a, -, o }and F is a vector which is F = { f fPy ., J fP 3.
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1
And this matrix A, aij = (Pi, Pj) = f t7dt = So, this is a nice, symmetric matrix with,
0

for 0< i, j < n. So, thisisa (n + 1) X (n + 1) matrix and therefore it is technically a nice,
in fact it is positive definite also, you can check that because these are basis vectors. So, it can be

solved. But when n is large, this is a very bad matrix. In fact, this is an example of a highly

ill-conditioned matrix. So, this matrix whose entries are is an example of a highly

n+j+1
ill-conditioned matrix. This is a terminology in numerical analysis which means small errors in
data lead to large errors in the solution. That means round of errors which are small, which are
natural to occur will blow up when you come to, the solution which you get by inverting this
matrix will be nowhere the real solution because there will be, computers will make a lot of

errors and this matrix of this nature will completely destroy it.

So, it is at this situation that the orthonormal basis, so suppose we do the Gram-Schmidt

Orthogonalisation and then we get {QO, Ql, Ce Qn} is orthonormal set got from

{PO, P1’ C ey Pn} by Gram-Schmidt. So, we get the Gram-Schmidt process and then, so let me

n

write Gram-Schmidt. So, then, P = }; @, Qj and then, it is very easy now.
j=1



If I take (P, Qi) =X (Qj, Ql,) = a, because only one of the terms is going to survive, all

n
j=1

others will disappear because of the orthogonality conditions. Therefore there is nothing to, no

need to solve anything.
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I, therefore can write, immediately I know what to, so I can write P = )’ (P, Qj)Qj. That is all.
j=1

So, I have got a polynomial without any difficulty. So, this is one of the uses of Gram-Schmidt

Orthogonalisation. It helps you to immediately write down the solution.
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Example of this Gram-Schmidt process.

So, let us take the space LZ(— 1, 1) and let us take Pi(t) = ti, i=20,1, 2. We want to
1

) 1/2 )

construct the Qs. So, what is PO? So, we have to take ||P0||2. ||P0||2 = (fadt)' = \/E POIS
-1

constant. So, we write Q 0(t) =—, Vt € [— 1, 1]. Now, we have to look at the function. So

’\/E )
now, consider the following function., Note, Pl(t) =t. So, ql(t) =t—( Q)=
0

1
t — % [ tdt = t.So, that is just the inner product of g, then, multiply it by Qo(t) =
-1

|-

. . . . 2 ..
Now, f tdt, tis an odd function. So, if you integrate, you would have got t , it is the same at

1

+1 and -1, so we will get [ tdt=0, so this term will not come. So, this is just t. And then
-1

Lo 1/2 _ 2. A3
||q1(t)||2 = (_flt dt) " = 5 And therefore, you write Ql(t) = v t vt € [— 1, 1]. So,

1 1
2 1 2 1 3 3 3. 2 1
now, let us take q,(t) =t - (_ﬁ —flt dt)—ﬁ - (_ﬁ —f1t dt)—ﬁ t =t"——. Note



1
ftsdt =0 as t is an odd function. And then ||q2(1:)||2 =§—ﬁ. So then, you have
-1

0,0 = 753" - 1.
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And similarly, you can proceed like this and you can show for instance that

Qs(t) = 2—@ (5 £ -3 t). So here, you notice something. Even polynomials which you get are

only involving the even powers of t and the odd polynomials are involving only the odd powers

of t . That is just because of the space, [— 1, 1] and the inner product which we have here.
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Remark. If you have Qn(t) = Qn(t), these are nothing but the famous Legendre

Polynomials. So, the Legendre Polynomials in applied mathematics are very famous in

numerical analysis also, so these are orthogonal polynomials. They also come from differential
equations, you might have studied. And these are nothing but, the, you take {1, ¢, tz,..} etc.,

apply the Gram-Schmidt Orthogonalisation in Lz(— 1, 1) and then you get them with the scaling

factor in the front. So, that is an example of this.

So now, we want to study in detail the properties of Orthonormal sets. So, we have seen
examples of Orthonormal sets, we have seen examples of the Gram-Schmidt Orthogonalization
process, we have also seen an application of why such orthogonalization is desirable and now,

we will now study the important properties of this.



