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We said that the distinguishing feature of Hilbert spaces over Banach spaces was the

orthogonality of vectors. And in fact, so far we have seen one important result that every closed

subspace of a Hilbert space, due to the orthogonal decomposition is complemented. So,𝑀 + 𝑀⊥

every closed subspace is complemented unlike a Banach space where it cannot happen. So, now,

it is time for us to study this orthogonality in a little more detail and so we come to the most

important section in this chapter.

Orthonormal Sets

Let be a Hilbert space. Let I be an indexing set. It could be empty, it could be finite, it could be𝐻

countable, it could be uncountable. So, let 𝑆 = {𝑢
𝑖
 / 𝑖 ∈  𝐼} ⊂  𝐻

Definition. We say that the set is orthonormal if . That is the normal part.𝑆 ∀ 𝑖 ∈  𝐼 ||𝑢
𝑖
|| = 1

Every vector is normalized. So, every vector has unit norm and whenever we have ,𝑖 ≠ 𝑗,  (𝑢
𝑖



)=0. So, they are all orthogonal to each other and they are all normalized vectors, namely, they𝑢
𝑖

have norm equal to 1 and therefore, such a set is called orthonormal.

Remark. Vectors in an orthonormal set, I will write o n for orthonormal, so orthonormal sets are

linearly independent. So, if you have , then you take any one , , so
𝑖=1

𝑛

∑ α
𝑖
 𝑢

𝑖
= 0  𝑢

𝑖
,   1 ≤ 𝑗 ≤ 𝑛

you have as . So, each and
𝑖=1

𝑛

∑ α
𝑖
 (𝑢

𝑖
,  𝑢

𝑗
) = 0 =  α

𝑗
||𝑢

𝑗
||2 = α

𝑗
α

𝑖
 (𝑢

𝑖
,  𝑢

𝑗
) = 0 ∀ 𝑖 ≠ 𝑗 α

𝑗
= 0

therefore, the vectors are linearly independent.

Example. So, if you take or . Let me write separately the basis vectors.𝑙
𝑛
2 𝑙

2

is a basis of . is a basis of . These are all sequences. 1 in the -th place, 0{𝑒
𝑘
}

𝑘=0

𝑛 𝑙
𝑛
2 {𝑒

𝑘
}

𝑘=0

∞ 𝑙
2

𝑘

elsewhere, is an orthonormal set.
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Then, let us take with the Lebesgue measure. And then you look at . So, then𝑋 = [0, 1] 𝐿2(0, 1)

if you write , then easy to check that is an orthonormal set. So,𝑓
𝑛
(𝑡) = 2 sin  (𝑛π𝑡) {𝑓

𝑛
}

𝑛=1
∞



and if you have, if ,
0

1

∫ 2 sin2(𝑛π𝑡)𝑑𝑡 = 2 1
2 = 1 𝑛 ≠ 𝑚

0

1

∫ sin(𝑚π𝑡) sin(𝑛π𝑡)𝑑𝑡 = 0

because that will be defined as the difference of some cosines and then you integrate, you will

get 0. So, is an example of orthonormal sets. So, now, we come to an important{𝑓
𝑛
}

𝑛=1
∞

proposition.

Proposition: (Gram-Schmidt Orthogonalisation.) Let be a Hilbert space. Let𝐻 {𝑥
1
,  𝑥

2
, ···,  𝑥

𝑛
}

be a set of linearly independent vectors. Then, there exists an orthonormal set in{𝑒
1
,  𝑒

2
, ···,  𝑒

𝑛
}

such that for every , is a linear combination of . So, you take ,𝐻 1 ≤ 𝑖 ≤ 𝑛 𝑒
𝑖

{𝑥
1
,  𝑥

2
, ···,  𝑥

𝑖
} 𝑥

1

then you get . Take , you get which is a linear combination of and so on.𝑒
1

{𝑥
1
,  𝑥

2
} 𝑒

2
   𝑥

1
& 𝑥

2

So, you build progressively this orthonormal set. So, the span of is the same as{𝑒
1
,  𝑒

2
, ···,  𝑒

𝑛
}

the span of because each is a linear combination of the ’s and{𝑥
1
,  𝑥

2
, ···,  𝑥

𝑛
}   𝑒

𝑖
𝑥

1
,  𝑥

2
, ···,  𝑥

𝑛

therefore, they span the same space. It is orthonormal so it is also linearly independent.

Proof. . So, . So, you put So, this automatically is a vector which𝑥
𝑖

≠ 0 ∀ 𝑖 𝑥
1

≠ 0 𝑒
1

=
𝑥

1

||𝑥
1
|| .

is a unit vector.
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Now, you take , so you consider . Now, this vector is orthogonal to .𝑒
2

𝑥
2

− (𝑥
2
,  𝑒

1
)𝑒

1
𝑒

1

Because if you take the inner product you get , as(𝑥
2
,  𝑒

1
) − (𝑥

2
,  𝑒

1
)(𝑒

1
,  𝑒

1
) = 0 

. So, this is orthogonal to . And since are linearly (𝑒
1
,  𝑒

1
) = 1 𝑒

1
𝑥

2
− (𝑥

2
,  𝑒

1
)𝑒

1
≠ 0 𝑥

1
, 𝑥

2

independent and this implies that and are also linearly independent. Because is just a𝑒
1

𝑥
2

𝑒
1

multiple of . And here, you have a non-zero coefficient for so this cannot be the 0 vector.𝑥
1

𝑥
2

Therefore, I can divide by its norm. So, I define . So again, is therefore𝑒
2

=  
𝑥

2
−(𝑥

2
, 𝑒

1
)𝑒

1

||𝑥
2
−(𝑥

2
, 𝑒

1
)𝑒

1
|| 𝑒

2

just a multiple of for the first one. So, and are orthogonal to each other and is a linear𝑥
2

𝑒
1

𝑒
2

𝑒
2

combination of and and that means it is a linear combination of and . Now, you𝑥
2

𝑒
1

𝑥
2

𝑥
1

proceed by induction. So you assume, we have constructed , for .{𝑒
1
,   ....,  𝑒

𝑘𝑖−1
} 1 ≤ 𝑘 ≤ 𝑛 − 1



So, we are going to define . So, we now look at . Now, this again,𝑒
𝑘+1

𝑥
𝑘+1

−
𝑖=1

𝑘

∑ (𝑥
𝑘+1

,  𝑒
𝑖
)𝑒

𝑖

cannot be 0 because it is a linear combination of and , but , by𝑥
𝑘+1

{𝑒
1
,  𝑒

2
, ···,  𝑒

𝑘
} {𝑒

1
,  𝑒

2
, ···,  𝑒

𝑘
}

induction hypothesis, are a linear combination of so the whole thing is a linear{𝑥
1
,  𝑥

2
, ···,  𝑥

𝑘
}

combination of and the coefficient of is 1, which is not 0, so𝑥
1
,  𝑥

2
, ···,  𝑥

𝑘+1
𝑥

𝑘+1

𝑥
𝑘+1

−
𝑖=1

𝑘

∑ (𝑥
𝑘+1

,  𝑒
𝑖
)𝑒

𝑖
≠ 0.
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Therefore, I can now define . Then, and𝑒
𝑘+1

=
𝑥

𝑘+1
−

𝑖=1

𝑘

∑ (𝑥
𝑘+1

, 𝑒
𝑖
)𝑒

𝑖

||𝑥
𝑘+1

−
𝑖=1

𝑘

∑ (𝑥
𝑘+1

, 𝑒
𝑖
)𝑒

𝑖
||

||𝑒
𝑘+1

|| = 1

. So, then, the induction hypothesis is complete and therefore you(𝑒
𝑘+1

, 𝑒
𝑗
) = 0,  ∀1 ≤ 𝑗 ≤ 𝑘

can go on. So, this can be done for any and you can construct the orthonormal base  vectors.𝑛

Remark. Let us take , that is, . Then, you take linearly independent(ℝ𝑁,  ||. ||
2
) 𝑙

𝑛
2 {𝑥

1
,  𝑥

2
, ···,  𝑥

𝑛
}

vectors in . And then we apply the Gram-Schmidt process to give you whichℝ𝑁 {𝑒
1
,  𝑒

2
, ···,  𝑒

𝑛
}



are orthonormal vectors. So, now, what, so we can, they span, for any , and𝑖 {𝑥
1
,  𝑥

2
, ···,  𝑥

𝑖
}

, so, and span the same subspace. So, let us{𝑒
1
,  𝑒

2
, ···,  𝑒

𝑖
}  ∀𝑖   {𝑥

1
,  𝑥

2
, ···,  𝑥

𝑖
} {𝑒

1
,  𝑒

2
, ···,  𝑒

𝑖
}

write Now, let be the matrix whose columns are . be the matrix whose𝑥
𝑗

=
𝑖=1

𝑗

∑ 𝑟
𝑖𝑗

 𝑒
𝑖
. 𝐴 𝑥

𝑗
𝑄

columns are . And be the matrix ,  where you put .𝑒
𝑗

𝑅 (𝑟
𝑖𝑗

) 𝑟
𝑖𝑗

= 0,  𝑖𝑓 𝑖 > 𝑗
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Then, is invertible because the columns of the matrix are linearly independent. Now, is a𝐴 𝑄

matrix whose columns are all orthogonal to each other and therefore matrix is orthogonal.𝑄

. Because that is just the definition of an orthogonal matrix so the columns of𝑄 𝑄𝑇 =  𝑄𝑇𝑄 = 𝐼

the orthogonal matrix are orthogonal vectors. And therefore, is the same as𝑥
𝑗

=
𝑖=1

𝑗

∑ 𝑟
𝑖𝑗

 𝑒
𝑖

. This is a theorem in matrix theory which we have proved. Every non singular matrix𝐴 = 𝑄𝑅

can be written in the form , orthogonal and upper triangle. Namely, is a matrix where𝑄𝑅 𝑄 𝑅 𝑅

below the diagonal everything is 0. So, this is a theorem in matrix theory which we have now

proved using the Gram-Schmidt Orthogonalisation process.
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So, what is the use of these orthogonal matrices? They are very useful. So, let us give an

example. So, you have a function.

Example. Suppose I have a continuous function Then we want to approximate it𝑓:  [0,  1] →  ℝ.  

by a polynomial. There are various ways, Lagrange interpolation is one way. Another method is

least squares approximation. What is a least squares approximation?

You look for a polynomial of degree, let us say such that𝑃(𝑡) ≤ 𝑛

. Where, so what is this? is this polynomials
0

1

∫ |𝑓(𝑡) − 𝑃(𝑡)|2𝑑𝑡 =
𝑄∈℘

𝑛

min
0

1

∫ |𝑓(𝑡) − 𝑄(𝑡)|2𝑑𝑡 ℘
𝑛

of degree . So, this is a subspace of continuous functions of . We are going to≤ 𝑛 dim  (𝑛 + 1)

look in the space because we are taking integrals here and here. So, is a Hilbert𝐿2(0, 1) 𝐿2(0, 1)

space. You have finite dimensional subspace therefore, it is a closed subspace. Then we know

that you can always find a proximinial point, that means there exists a unique polynomial 𝑃

which satisfies this condition and is called the least square approximation of . Now, how do𝑃 𝑓

we do this? So, this polynomial , what is it characterized by? So, this characterization is,𝑃

. So, is characterized by these equations, namely the inner(𝑃,  𝑄) =  (𝑓,  𝑄)   ∀ 𝑄 ∈ ℘
𝑛

𝑃

product; we have seen this when proving the Lax-Milgram Lemma, even before that. So, now,

since this is a linear space and this is a linear relationship in and , therefore it is enough to𝑃 𝑄



check it only for the basis elements. So, basis of , standard basis are the functions℘
𝑛

where , 1 , so forms a basis.{𝑃
0
,  𝑃

1
,. ...,  𝑃

𝑛
} 𝑃

0
(𝑡) = 1,  𝑃

𝑖
(𝑡) = 𝑡𝑖 ≤ 𝑖 ≤ 𝑛 {1,  𝑡,  𝑡2,,...}

So, if you take the polynomial = . So,𝑃(𝑡) α
0

+ α
1
𝑡 + ···+ α

𝑛
𝑡𝑛 𝑃(𝑡) =

𝑖=0

𝑛

∑ α
𝑖
𝑃

𝑖
(𝑡).
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So, then if you substitute that in equation ,, you will get following linear(𝑃,  𝑄) =  (𝑓,  𝑄)

system. So, you substitute here. So, we are going to write, for(
𝑗=0

𝑛

∑ α
𝑗

𝑃
𝑗
,  𝑃

𝑖
) =  (𝑓,  𝑃

𝑖
)

. So, this gives you linear equations in unknowns . So,1 ≤ 𝑖 ≤ 𝑛 𝑛 + 1 𝑛 + 1 α
0
, α

1
, ···,  α

𝑛

once you find the ’s you know and therefore, you have found the . Now, what is this thing?α 𝑃 𝑃2

This can be written as , where , . And is a vector𝐴 𝑥 = 𝐹 𝐴 = (𝑎
𝑖𝑗

) 𝑎
𝑖𝑗

= (𝑃
𝑗
,  𝑃

𝑖
) 𝑋

and F is a vector which is .𝑋 = {α
0
, ···,  α

𝑛
} 𝐹 = {∫ 𝑓𝑃

0
,  .  .  .  ,  ∫ 𝑓𝑃

𝑛
}
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And this matrix A, So, this is a nice, symmetric matrix with,𝑎
𝑖𝑗

= (𝑃
𝑖
,  𝑃

𝑗
) =

0

1

∫ 𝑡𝑖+𝑗𝑑𝑡 = 1
𝑖+𝑗+1 .

for 0 . So, this is a matrix and therefore it is technically a nice,≤ 𝑖,  𝑗 ≤  𝑛 (𝑛 + 1) × (𝑛 + 1)

in fact it is positive definite also, you can check that because these are basis vectors. So, it can be

solved. But when is large, this is a very bad matrix. In fact, this is an example of a highly𝑛

ill-conditioned matrix. So, this matrix whose entries are is an example of a highly1
𝑛+𝑗+1

ill-conditioned matrix. This is a terminology in numerical analysis which means small errors in

data lead to large errors in the solution. That means round of errors which are small, which are

natural to occur will blow up when you come to, the solution which you get by inverting this

matrix will be nowhere the real solution because there will be, computers will make a lot of

errors and this matrix of this nature will completely destroy it.

So, it is at this situation that the orthonormal basis, so suppose we do the Gram-Schmidt

Orthogonalisation and then we get is orthonormal set got from{𝑄
0
,  𝑄

1
,  .  .  .,  𝑄

𝑛
}

by Gram-Schmidt. So, we get the Gram-Schmidt process and then, so let me{𝑃
0
,  𝑃

1
,  .  .  .,  𝑃

𝑛
}

write Gram-Schmidt. So, then, and then, it is very easy now.𝑃 =
𝑗=1

𝑛

∑ α
𝑗
 𝑄

𝑗



If I take , because only one of the terms is going to survive, all(𝑃,  𝑄
𝑖
) =

𝑗=1

𝑛

∑ α
𝑗
 (𝑄

𝑗
,  𝑄

𝑖
) = α

𝑖

others will disappear because of the orthogonality conditions. Therefore there is nothing to, no

need to solve anything.
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I, therefore can write, immediately I know what to, so I can write . That is all.𝑃 =
𝑗=1

𝑛

∑ (𝑃,  𝑄
𝑗
)𝑄

𝑗

So, I have got a polynomial without any difficulty. So, this is one of the uses of Gram-Schmidt

Orthogonalisation. It helps you to immediately write down the solution.
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Example of this Gram-Schmidt process.

So, let us take the space and let us take . We want to𝐿2(− 1,  1) 𝑃
𝑖
(𝑡) = 𝑡𝑖,    𝑖 = 0,  1,  2, ···

construct the Qs. So, what is ? So, we have to take is𝑃
0

||𝑃
0
||

2
.  ||𝑃

0
||

2
=  (

−1

1

∫ 𝑑𝑡 )1/2 = 2.  𝑃
0

constant. So, we write . Now, we have to look at the function. So𝑄
0
(𝑡) = 1

2
,  ∀𝑡 ∈ [− 1,  1]

now, consider the following function., Note, . So,𝑃
1
(𝑡) = 𝑡 𝑞

1
(𝑡) = 𝑡 − (𝑡,  𝑄

0
) =

. So, that is just the inner product of , then, multiply it  by .𝑡 − 1
2 −1

1

∫ 𝑡 𝑑𝑡 = 𝑡 𝑞 𝑄
0
(𝑡) = 1

2

Now, , is an odd function. So, if you integrate, you would have got , it is the same at∫ 𝑡 𝑑𝑡 𝑡 𝑡2

+1 and -1, so we will get =0, so this term will not come. So, this is just t. And then
−1

1

∫ 𝑡 𝑑𝑡

And therefore, you write . So,||𝑞
1
(𝑡)||

2
= (

−1

1

∫ 𝑡2 𝑑𝑡)1/2 = 2
3

. 𝑄
1
(𝑡) = 3

2
𝑡     ∀ 𝑡 ∈ [− 1,  1]

now, let us take . Note𝑞
2
(𝑡) = 𝑡2 − ( 1

2 −1

1

∫ 𝑡2𝑑𝑡) 1
2

− ( 3
2 −1

1

∫ 𝑡3𝑑𝑡) 3
2

𝑡 = 𝑡2 − 1
3



as is an odd function. And then . So then, you have
−1

1

∫ 𝑡3𝑑𝑡 = 0 𝑡3 ||𝑞
2
(𝑡)||

2
= 2 2

3 5

.𝑄
2
(𝑡) = 5

2 2
(3𝑡2 − 1)
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And similarly, you can proceed like this and you can show for instance that

So here, you notice something. Even polynomials which you get are𝑄
3
(𝑡) = 7

2 2
(5 𝑡3 − 3 𝑡).  

only involving the even powers of and the odd polynomials are involving only the odd powers𝑡

of . That is just because of the space, and the inner product which we have here.𝑡 [− 1,  1]
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Remark. If you have , these are nothing but the famous Legendre𝑄
~

𝑛
(𝑡) = 2

2𝑛+1  𝑄
𝑛
(𝑡)

Polynomials. So, the Legendre Polynomials in applied mathematics are very famous in

numerical analysis also, so these are orthogonal polynomials. They also come from differential

equations, you might have studied. And these are nothing but, the, you take etc.,{1,  𝑡,  𝑡2,..}

apply the Gram-Schmidt Orthogonalisation in and then you get them with the scaling𝐿2(− 1,  1)

factor in the front. So, that is an example of this.

So now, we want to study in detail the properties of Orthonormal sets. So, we have seen

examples of Orthonormal sets, we have seen examples of the Gram-Schmidt Orthogonalization

process, we have also seen an application of why such orthogonalization is desirable and now,

we will now study the important properties of this.


