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We will study some applications. This is called Variational Inequalities. Suppose we want to

solve the system of linear equations . This is the same as saying𝐴𝑥 =  𝑏

So, you can write it in this form also. So, we treat as a column𝑦𝑇𝐴𝑥 =  𝑦𝑇𝑏      ∀  𝑦 ∈ ℝ𝑁. 𝑥

vector, is a column vector, so transpose is a row vector and this is the inner product.𝑏

So, generalization of these two infinite dimensional spaces is to have a bilinear form, let us say

in a Hilbert space, and to solve . is a Hilbert space and you want to𝑎(𝑥,  𝑦) = (𝑓,  𝑦)   ∀𝑦 ∈ 𝐻 𝐻

find an . And is a bilinear form. Variational inequalities are further𝑥 ∈ 𝐻 𝑎(𝑥,  𝑦) = (𝑓,  𝑦)

generalizations of this and they occur especially in constrained optimization problems. That is

why the name variational comes there. And many problems in science and engineering can put

in this form like two phase heat transmission problems, melting of ice or the stretching of an

elastic membrane over an obstacle, etc. They can all be cast in the language of variational

inequalities. So today, we will study an important existence theorem for variational inequalities.



is a real Hilbert space and you have . So, we will deal with a real𝐻 𝑎(.  ,  .) : 𝐻 × 𝐻 → ℝ 

Hilbert space this time because we are going to do inequalities, you cannot do that in complex

numbers and anyway you have to go to the real part and therefore, you might as well deal with a

real Hilbert space. So, is a bilinear form. That means, you fix one variable, 𝑎(.,  .) : 𝐻 × 𝐻 → ℝ

then it is linear in the other variable. That is what we have, a bilinear, a typical, inner product in

the real Hilbert space is a bilinear form. So, and this is continuous if s.t.∃ 𝑀 > 0 ∀ 𝑥,  𝑦 ∈ 𝐻

we have . And then it is called -elliptic, another word is coercive.|𝑎(𝑥,  𝑦)| ≤  𝑀 ||𝑥|| ||𝑦|| 𝐻

This terminology we have seen before and you will know immediately why I am having that. If

such that , we have . Then it is called -elliptic.∃ α > 0 ∀ 𝑥 ∈ 𝐻 𝑎(𝑥,  𝑥) ≥ α||𝑥||2 𝐻

(Refer Slide Time: 4:00)

Example. Inner product is a continuous, -elliptic, bilinear form. It is bilinear and then it is𝐻

continuous by the Cauchy-Schwarz inequality and -elliptic, in fact gives you𝐻 (𝑥,  𝑥) ||𝑥||2

itself. So, . More generally, if you have is a symmetric, continuous and -ellipticα = 1 𝑎(.,  .) 𝐻

bilinear form, so symmetry means what? . Then you can Define :𝑎(𝑥,  𝑦) = 𝑎(𝑦,  𝑥)  ∀𝑥,  𝑦 ∈ 𝐻

. Well, it is linear in both variables, it is symmetric, it is given and(𝑥,  𝑦)
𝑎
 =  𝑎(𝑥,  𝑦)

, so This gives you a norm and in fact, this norm is𝑎(𝑥,  𝑥) ≥ α||𝑥||2 ||𝑥||
𝑎

= 𝑎(𝑥,  𝑥).

equivalent to the original norm because (by theα||𝑥||2 ≤ ||𝑥||
𝑎

2 = 𝑎(𝑥,  𝑥) ≤  𝑀||𝑥||2



continuity). Therefore, you have is equivalent to . So, you get an equivalent inner||𝑥||
𝑎

||𝑥||

norm and you have a new inner product.

Example. So, you have . And is matrix with real entries, then you(ℝ𝑁,  || . ||
2
) = 𝑙

2
𝑁 𝐴 𝑛 × 𝑛

have . So, this is a bilinear form and obviously, continuous. So, if is positive 𝑎(𝑥,  𝑦) = 𝑦𝑇𝐴 𝑥 𝐴

definite, then is elliptic, i.e., elliptic or elliptic, whatever you want to say.𝑎(𝑥,  𝑦) ℝ𝑁 𝑙
2
𝑁
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So, now, let us prove the main theorem in this connection.

Theorem. (Stampacchia) is a real Hilbert space and is a continuous𝐻 𝑎(.  ,  .) : 𝐻 × 𝐻 → ℝ 

and -elliptic bilinear form. Let be a closed convex subset. Let . Then, a unique𝐻 𝐾 ⊂  𝐻 𝑓 ∈ 𝐻 ∃

such that, —----(*). These are called variational𝑥 ∈ 𝐾 𝑎(𝑥,  𝑦 − 𝑥) ≥ (𝑓,  𝑦 − 𝑥)  ∀ 𝑦 ∈ 𝐾

inequalities.

So, we are proving an existence theorem for this. So, instead of which we had here,𝑎(𝑥,  𝑦) = 𝑓

we are now having an inequality instead and these, as I told you are connected to constrained

optimization problems especially if is symmetric and therefore, we have, it is interesting𝑎( .,  .)

to prove the existence theorem.
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Proof. Let be fixed. Then, is a continuous linear functional because of the𝑢 ∈ 𝐻 𝑣 ↦ 𝑎(𝑢,  𝑣)

continuity of the bilinear form. Therefore, by the Riesz Representation theorem, there exists

such that . I should have usually put it in the second coordinate but𝐴𝑢 ∈ 𝐻 (𝐴𝑢,  𝑣) =  𝑎(𝑢,  𝑣)

now we are in the real Hilbert space so I will be fairly carefree in the sense that it is symmetric

and therefore, I can put it anywhere here. This is for every . So, by the Riesz𝑣 ∈ 𝐻

Representation theorem, this is. So, and therefore you have that,||(𝐴𝑢,  𝑣) || ≤  𝑀 ||𝑢|| ||𝑣|| 

and is linear and and you have𝑢 ↦ 𝐴𝑢 ||𝐴𝑢|| ≤ 𝑀 ||𝑢||,  (𝐴𝑢,  𝑢) = 𝑎(𝑢,  𝑢) ≥ α||𝑢||2.

(*) find such that⇔ 𝑥 ∈ 𝐾 (𝐴𝑥,  𝑦 − 𝑥) ≥ (𝑓,  𝑦 − 𝑥)

find such that you have , where .      ⇔  𝑥 ∈ 𝐾 (− ρ𝐴𝑥 + ρ𝑓,  𝑦 − 𝑥) ≤ 0 ∀ 𝑦 ∈ 𝐾 ρ > 0

find such that .      ⇔  𝑥 ∈ 𝐾 (− ρ𝐴𝑥 + ρ𝑓 + 𝑥 − 𝑥,  𝑦 − 𝑥) ≤ 0 ∀ 𝑦 ∈ 𝐾

(Now, this looks very familiar, this is like the projection inequality which we proved)

⇔  𝑥 =  𝑃
𝑘
(− ρ𝐴𝑥 + ρ𝑓 + 𝑥) : =  𝑆𝑥.
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So, we are having a map and then I am defining and𝑆:  𝐾 →  𝐾 𝑥 ∈ 𝐾 𝑃
𝑘
(− ρ𝐴𝑥 + ρ𝑓 + 𝑥)

that comes back to and I want to find a fixed point. That is, find a fixed point of .𝐾 𝑆

Let us look at ||𝑆𝑥
1

− 𝑆𝑥
2
|| = ||𝑃

𝐾
(− ρ𝐴𝑥

1
+ ρ𝑓 + 𝑥

1
) − 𝑃

𝐾
(− ρ𝐴𝑥

2
+ ρ𝑓 + 𝑥

2
)||

≤  ||𝑥
1

− 𝑥
2

− ρ𝐴(𝑥
1

− 𝑥
2
)||

(As we know (we have shown this).||𝑃
𝐾

(𝑥) − 𝑃
𝐾

(𝑦)|| < ||𝑥 − 𝑦||

So now, we square this and develop it.

||𝑆𝑥
1

− 𝑆𝑥
2
||2 ≤  ||𝑥

1
− 𝑥

2
||2 −  2ρ (𝐴(𝑥

1
− 𝑥

2
),  𝑥

1
− 𝑥

2
) +  ρ2||𝐴(𝑥

1
− 𝑥

2
)||2



[using, & ]≤   ||𝑥
1

− 𝑥
2
||2 (1 − 2ρ α + ρ2𝑀2 ) 𝐴(𝑧,  𝑧) ≥ α||𝑧||2 ||𝐴𝑥|| ≤ 𝑀||𝑥||
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Now, I am going to choose a . So, choose such that 1. That means,ρ ρ 1 − 2ρ α + ρ2𝑀2 <

. So, choose such as this. So, this implies ,0 < ρ <  2α

𝑀2 ρ ||𝑆𝑥
1

− 𝑆𝑥
2
|| <  β ||𝑥

1
− 𝑥

2
||

where 1. So then, this is a contraction implies there exists a uniqueβ =  1 − 2ρ α + ρ2𝑀2 <

fixed point and therefore that proves the theorem of Stampacchia. So, we have found a unique

fixed point of and that is precisely the solution of the variational inequality.𝑓
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Corollary. (Lax-Milgram Lemma) Hilbert and continuous and𝐻 𝑎(.  ,  .):  𝐻 × 𝐻 → ℝ 𝐻

-elliptic, is given. Then, a unique such that So, this𝑓 ∈ 𝐻 ∃ 𝑥 ∈ 𝐻 𝑎(𝑥,  𝑦) =  (𝑓,  𝑦)   ∀𝑦 ∈ 𝐻.

is exactly the infinite dimensional version of solving n linear equations in (())(19:09) which I

started this lecture with.

Proof. . So, this is, we can apply the Stampacchia theorem. So, a unique such that𝐾 = 𝐻 ∃ 𝑥

Now, take any . So, you write .𝑎(𝑥,  𝑦 − 𝑥) ≥  (𝑓,  𝑦 − 𝑥)   ∀𝑦 ∈ 𝐻. 𝑧 ∈ 𝐻 𝑦 = 𝑧 + 𝑥 ∈ 𝐻

Then you get . Now, you apply it for , then, you will get the𝑎(𝑥,  𝑧) ≥ (𝑓,  𝑧)   ∀𝑧 ∈ 𝐻 − 𝑧 ∈ 𝐻

opposite inequality. You will get less than equal to and therefore 𝑎(𝑥,  𝑧) =  (𝑓,  𝑧)   ∀𝑧 ∈ 𝐻.

and that proves the Lax-Milgram Lemma.
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So, the Lax-Milgram Lemma is, as I said, the infinite dimensional.

Remark. Lax-Milgram Lemma can be thought of as the infinite dimensional generalization of

the fact that a positive definite matrix is invertible. If you have a positive definite matrix, it is

invertible. It is deterministically positive and you can have, you can uniquely solve and𝐴𝑥 = 𝑏

this is exactly the generalization.

And positive definite matrix is and therefore, you will get precisely the(𝐴𝑥,  𝑥) = 𝑥𝑇𝐴𝑥 ≥  α

generalization of this. And this is the cornerstone of the existence theory for elliptic partial

differential equations and, and it is also for numerical methods like the finite elements method.

The Lax-Milgram Lemma is in fact a very useful tool. And in the symmetric case, is𝐴

symmetric, then can be thought of as a minimizer. So, minimizes𝑥 𝑥 ∈ 𝐾 

over . . If is symmetric, you can𝐽(𝑦) = 1
2 𝑎(𝑦,  𝑦) − (𝑓,  𝑦) 𝐾 𝐽(𝑥) =

𝑦∈𝐾
min 𝐽(𝑦) 𝑎(.  ,  .)

interpret the variational inequality as this. And the variational inequality becomes equality by

namely the Euler-Lagrange Equations when you have this, it is the whole space and therefore

that is the Lax-Milgram Lemma. Then, the Lax-Milgram Lemma also holds for any closed

subspace.
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That means if is a closed subspace and is continuous and -elliptic and then𝑊 ⊂ 𝐻 𝑎(.  ,  .) 𝐻

, then a unique such that . This can also be very𝑓 ∈ 𝐻 ∃ 𝑤 ∈ 𝑊 𝑎(𝑤 ,  𝑣) = (𝑓,  𝑣) ∀𝑣 ∈ 𝑊

easy to prove. Just again, it is exactly the same proof which I used for the Lax-Milgram Lemma

and therefore, this can be proved.


