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Now we will talk about the adjoint of a continuous linear operator in the context of a

Hilbert space. So, we have already discussed adjoints earlier. This is essentially the same

except that we are now looking in the view of the Riesz Representation theorem. You do

not have to really go to the dual space. You can work on the base space itself. So, that is

the idea.

Let be a Hilbert space. And let be a bounded linear operator or continuous linear𝐻 𝐴

operator on , that means it maps into . So, you fix and you look at the map𝐻 𝐻 𝐻 𝑦 ∈ 𝐻

. So, this is the continuous linear functional because𝑥 ↦ (𝐴𝑥,  𝑦) |(𝐴𝑥,  𝑦)| ≤ ||𝐴𝑥|| ||𝑦||



by the Cauchy-Schwarz inequality, i.e. . So, this is less than|(𝐴𝑥,  𝑦)| ≤ ||𝐴|| ||𝑦|| ||𝑥||

some constant times and therefore this is a continuous linear functional.||𝑥||

Consequently, by Riesz Representation theorem, there exists a unique vector, ,𝐴*𝑦 ∈ 𝐻

such that you have is precisely the linear mapping . So, you see this(𝑥,  𝐴* 𝑦) (𝐴𝑥,  𝑦)

relationship comes in very naturally and now, thanks to the Riesz Representation theorem

we can do it. So, it is easy to check that is linear. Let us check that itself. So, since we𝐴*

are always dealing with complex spaces, it is better to check it once and for all.

So, let us take (𝑥,  𝐴* (α 𝑦 + β 𝑧)) = (𝐴𝑥, α 𝑦 + β 𝑧 ) = α‾ (𝐴𝑥,  𝑦) +  β‾  (𝐴𝑥,  𝑧)

= α‾ (𝑥,  𝐴*𝑦) +  β‾ (𝑥,  𝐴*𝑧) = (𝑥,  α 𝐴*𝑦 + β 𝐴*𝑧)

, this is a linear map. It is also continuous because⇒  𝐴* (α 𝑦 + β 𝑧) = α 𝐴*𝑦 + β 𝐴*𝑧

you have .||𝐴* 𝑦|| ≤ ||𝐴|| ||𝑦||,   𝐴* ∈ 𝐿(𝐻)
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So, this proves that in fact belongs to and in fact, you have . So,𝐴* 𝐿(𝐻) ||𝐴*|| ≤ ||𝐴|| 𝐴*

is called the adjoint map. So, we have the following properties of the adjoint.

Proposition. Hilbert and and , are continuous linear operators on .𝐻 𝐴 𝐴
𝑖

𝑖 = 1,  2 𝐻



And scalar, generally complex.α

(i) .||𝐴 || = ||𝐴*||

(ii) . ||𝐴* 𝐴 || = ||𝐴 ||2

(iii) .𝐴** =  𝐴

(iv) .(𝐴
1

+ 𝐴
2
)* = 𝐴

1
* + 𝐴

2
*

(v) (𝐴
1
 𝐴

2
)* = 𝐴

2
* 𝐴

1
*

(v) , if you have a real scalar, then the conjugate will not appear. It will just(α 𝐴)* = α‾  𝐴*

be . (Refer Slide Time: 06:38)(α 𝐴)* = α 𝐴*

Proof. So, we already know that . That is, just above. So, we have proved||𝐴*|| ≤ ||𝐴||

that. Now, we go back to the relationship which define , so we get𝐴* (𝐴𝑥,  𝑦) = (𝑥,  𝐴* 𝑦)

. So, . So, if you take|(𝐴𝑥,  𝑦)| ≤ ||𝑥|| ||𝐴*|| ||𝑦|| ||𝐴𝑥|| = sup
𝑦≠0

|(𝐴𝑥, 𝑦)|
||𝑦|| ≤  ||𝐴*|| ||𝑥||

and therefore, this implies , and this implies . So, we have||𝐴𝑥||
||𝑥|| ≤ ||𝐴*|| ||𝐴|| ≤ ||𝐴*|| 

both the inequalities and therefore, the first one is proved.
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If and are arbitrary elements of , you have𝑥 𝑦 𝐻

. So, is again, by the supremum|(𝐴 𝐴*𝑥,  𝑦 )| = |(𝐴𝑥,  𝐴𝑦)| ≤ ||𝐴||2||𝑥|| ||𝑦|| ||𝐴* 𝐴𝑥||

rule, less than equal to and this implies . On the other hand,||𝐴||2 ||𝑥|| ||𝐴 𝐴*|| ≤ ||𝐴||2

. So, using the||𝐴𝑥||2 = (𝐴𝑥,  𝐴𝑥) = (𝐴* 𝐴𝑥,  𝑥) ≤ ||𝐴* 𝐴|| ||𝑥||2 ||𝐴||2 ≤ ||𝐴* 𝐴||

supremum. And therefore, once again, you have both inequalities. You have

. Now, the remaining are all very trivial consequences. just ||𝐴* 𝐴 || = ||𝐴 ||2 𝐴** =  𝐴

comes from the relation . From the symmetry in this relationship,(𝑥,  𝐴* 𝑦) = (𝐴𝑥,  𝑦)

you immediately see that . And the fourth one, which is for the sum, again, and𝐴** =  𝐴

all these are immediately from the defining relationship. So, (iii) to (vi) follow trivially

from the defining relation. What is that? . So, this, really nothing to(𝑥,  𝐴* 𝑦) = (𝐴𝑥,  𝑦)

prove there. This is a very simple exercise.
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If you have a Banach algebra,

Remark. What is a Banach algebra? We have seen this. This is a Banach space in which

you can multiply vectors so, and you have . So, for normed||𝑥 𝑦|| ≤ ||𝑥|| ||𝑦|| 𝐿(𝑉) 𝑉

linear space, is typically a Banach algebra because, you all have addition, scalar

multiplication and composition which is like multiplication of vectors and you know if

you have two operators and , then can be defined. If and are continuous𝑇 𝑆 ||𝑇 𝑆|| 𝑇 𝑆

linear operators, . We know this.||𝑇 𝑆|| ≤ ||𝑇|| ||𝑆||

So, a Banach algebra is said to be a -algebra if there exists a mapping satisfying⋆ 𝑥 ↦𝑥*

(iii) to (vi). And the mapping is called an involution. If (i) and (ii) are also satisfied, then

is called a -algebra. Thus, is a algebra with the adjoint mapping being the𝐵 𝐵* 𝐿(𝐻) 𝐵*

involution.
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So, now, some terminologies.

Definition. So, Hilbert space and . So, is self-adjoint if .𝐻 𝐴 ∈ 𝐿(𝐻) 𝐴 𝐴 = 𝐴*

is normal if . So, self adjoint is in particular normal.𝐴  𝐴 𝐴* =  𝐴* 𝐴

is unitary if .𝐴 𝐴 𝐴* =  𝐴* 𝐴 = 𝐼

Example. Hilbert and is a closed subspace. And is the orthogonal𝐻 𝑀 𝑃:  𝐻 →  𝑀

projection. That means is written as and then is the orthogonal𝐻 𝑀 ⊕ 𝑀⊥ 𝑃:  𝐻 →  𝑀

projection. So, now, if you have , if . Now, . So,(𝑃*𝑥,  𝑦) = (𝑥,  𝑃𝑦) 𝑥,  𝑦 ∈ 𝐻 𝑃𝑦 ∈ 𝑀

what is the characterization? So, this is nothing but because that is how the(𝑃𝑥,  𝑃𝑦)

projection is defined. They are characterized by this. So now, .(𝑃𝑥,  𝑃𝑦) = (𝑃𝑥,  𝑦)

Because again by the repeated application of the definition of the orthogonal projection.

So, this means that for all and is true so and of course𝑥 𝑦, (𝑃*𝑥,  𝑦) = (𝑃𝑥,  𝑦) 𝑃 = 𝑃* 𝑃

is a projection, therefore . So, is self adjoint.𝑃 = 𝑃2 = 𝑃* 𝑃
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Conversely, if , then is an orthogonal projection. So, let us take .𝑃 = 𝑃2 = 𝑃* 𝑃 𝑦 ∈ 𝑅(𝑃)

So, , because and because (𝑥,  𝑦) = (𝑥,  𝑃𝑦) 𝑃 = 𝑃* (𝑥,  𝑦) = (𝑥,  𝑃𝑦) = (𝑃𝑥,  𝑦)

so, is the same as . Therefore, you have that ,  𝑃2 = 𝑃 (𝑥,  𝑦) (𝑃𝑥,  𝑦) (𝑥 − 𝑃𝑥,  𝑦) = 0

that is, .𝑅(𝐼 − 𝑃) ⊂ 𝑅(𝑃)⊥

Converse part: Exercise If you have . So, therefore, you have𝑅(𝑃)⊥ = 𝑅(𝐼 − 𝑃)

. So, check. And therefore, it is an orthogonal projection.𝐻 = 𝑅(𝑃) ⊕ 𝑅(𝐼 − 𝑃)
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Example. Let us take . So if you have matrices then, matrices are the𝑙
2
𝑛 = (ℝ𝑛,  ||. ||

2
)

same as continuous linear transformation, matrices on . And therefore you have𝑛 × 𝑛 𝑙
2
𝑛

that Hermitian matrix, that means equals the conjugate transpose. So this gives a self𝐴

adjoint operator. And then, the operator defined by a normal matrix, gives you a normal

operator. And if you have a unitary matrix, then you get the unitary operator. So, we are

just retaining the terminology of these things.

Remark. Suppose you have an unbounded operator. So, which is𝐷(𝐴) ⊂ 𝐻 → 𝐻

densely defined. Then, we can define, exactly in the same way, from𝐴* 𝐷(𝐴*) ⊂ 𝐻 → 𝐻

and again, you have . So, I leave it to you(𝑥,  𝐴* 𝑦) = (𝐴𝑥,  𝑦)  ∀𝑥 ∈ 𝐷(𝐴)  & 𝑦 ∈ 𝐷(𝐴*)

to check that. And then, all the properties of the adjoint which we have proved earlier are

all true. So, if you want, is self adjoint, that means . So, this should mean, you𝐴 𝐴 = 𝐴*

have to prove two things. (i) and (ii) . That means𝐷(𝐴) = 𝐷(𝐴*), 𝐴 = 𝐴*



. So, it is what is called a symmetric operator. So,(𝑥,  𝐴 𝑦) = (𝐴𝑥,  𝑦)  ∀𝑥,  𝑦 ∈ 𝐷(𝐴)

symmetric and domain coincides, then you say that it is a self adjoint operator. So, when

you check self adjoint for unbounded operators, you have to be a little careful. Just

checking the symmetry relationship is not enough. We have to also check that the domain

of is the same as the domain of𝐴 𝐴*.


