
Functional Analysis
Professor. S. Kesavan

Department of Mathematics
The Institute of Mathematical Sciences

Lecture No. 51
Duality

(Refer Side Time: 0:16)

We will now study about Duals of Hilbert Spaces. So, we have the following theorem.

Again, it is called the Riesz Representation Theorem because it gives you a

representation of the element of the dual.

Theorem (Riesz Representation Theorem): Let be a Hilbert Space. Let . Then𝐻 ϕ ∈ 𝐻*

a unique such that . Further,∃ 𝑦 ∈ 𝐻 ϕ(𝑥) = (𝑥,  𝑦)    ∀𝑥 ∈ 𝐻 ||ϕ|| = ||𝑦||.

We already saw that if you have , then given by gives you a linear𝑦 ∈ 𝐻 𝑓
𝑦

(𝑥,  𝑦)

functional whose norm is equal to the norm of the vector. Now, we say that every linear

functional occurs in this fashion.

Proof. If , then defines a continuous linear functional and by the𝑦 ∈ 𝐻 𝑓
𝑦
(𝑥) = (𝑥,  𝑦)

Cauchy-Schwarz inequality, . This, we have already seen in an example last||𝑓
𝑦
|| = ||𝑦||

time. Now, we have to show that every mapping occurs in this way. So, if you take the



mapping namely . So, this is an isometry into . So, the imageϕ:  𝐻 ↦𝐻* ϕ(𝑦) =  𝑓
𝑦

𝐻*

of is closed and all we have to show, to show is onto, enough to show the image ofϕ ϕ ϕ

is dense. Since the image of is already closed since you have an isometry, so it isϕ

enough to show that the image is dense. So, that will complete the proof. So, you

consider a linear functional. Let us say which vanishes on the image of Toψ ∈ 𝐻** ϕ.

show, . Hilbert spaces are uniformly convex, Hilbert space is reflexive.ψ = 0 𝐻 ⇒ 𝐻

Therefore, . So, if you take any image of , so∃ 𝑥 ∈ 𝐻      ∀ 𝑓 ∈ 𝐻* 𝑓
𝑦 

∈ ϕ

. ψ(𝑓
𝑦
) =  𝑓

𝑦
(𝑥) = (𝑥,  𝑦)
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This implies that such that In particular, this implies that𝑥 ∈ 𝐻 (𝑥,  𝑦) = 0     ∀ 𝑦 ∈ 𝐻.  

, that is, . And that implies that and therefore,(𝑥,  𝑥) = 0 ||𝑥||2 = 0 ⇒  𝑥 = 0 ψ = 0

the image is dense and consequently we have shown that is onto and therefore theϕ

Riesz Representation theorem is completely proved.
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So, now, we can directly prove.

Proof. “ab initio” That means from first principles that is reflexive and Riesz𝐻

Representation theorem holds. In fact, we will first prove the Riesz Representation

theorem and then from that, we will deduce that is reflexive. Up till now what have we𝐻

done? We have used uniform convexity and the fact that uniform convex spaces are

reflexive and we prove the Riesz Representation theorem. Here, we will now directly

prove the Riesz Representation theorem without using any machinery and then deduce in

fact that is reflexive. It is good to know both the proofs.𝐻

Let us assume that is not identically 0. If it is 0, then the 0 vector is there so we do notϕ

need to do anything. So, . So, such that . Let us takeϕ ≠ 0 ∃ 𝑢 ∈ 𝐻 ϕ(𝑢) ≠ 0 𝑣 ∈ 𝐻

and then look at . You can divide because . Now,𝑣 − ϕ(𝑣)
ϕ(𝑢)  𝑢 ϕ(𝑢) ≠ 0

because . This𝑣 − ϕ(𝑣)
ϕ(𝑢)  𝑢 ∈ 𝐾𝑒𝑟 ϕ ϕ(𝑣 − ϕ(𝑣)

ϕ(𝑢) 𝑢) = ϕ(𝑣) − ϕ(𝑢)ϕ(𝑣)/ϕ(𝑢) = 0

implies that has codimension 1. Namely, it is, the complement of that is 1𝐾𝑒𝑟 ϕ = 𝑀

dimensional. It is spanned by a vector such that . Therefore, let us take𝑢 ϕ(𝑢) ≠ 0

(the orthogonal complement) and such that . And now, you put𝑢 ∈ 𝑀⊥ ||𝑢|| = 1

. I am doing the complex case always so, up to now, in Banach space theory,𝑦 = ϕ(𝑢) 𝑢



I have said, worked with reals and then said the complex case will be the same proof and

also in case there was a difference like the Hahn Banach Theorem, I made special

mention of that fact. In the case of Hilbert spaces, I will naturally work with complex

numbers because there is conjugation which always comes into play and it is better to

check everything if that is okay and then if the real case will be obvious because you do

not have to put the conjugate at all. So, we will always work with the complex numbers

as the base field. Now, if you take any , then can be written as𝑥 ∈ 𝐻 𝑥

Now, . Now, and are𝑥 = 𝑚 + α𝑢,    𝑚 ∈ 𝑀.  (𝑥,  𝑦) = (𝑚 + α𝑢,  ϕ(𝑢) 𝑢) 𝑚 𝑢

orthogonal because is in , . Therefore, so you get𝑚 𝑀 𝑢 ∈ 𝑀⊥ (𝑚,   ϕ(𝑢) 𝑢) = 0

=(𝑥,  𝑦) = (𝑚 + α𝑢,  ϕ(𝑢) 𝑢) = α ϕ(𝑢)(𝑢,  𝑣) = α ϕ(𝑢) = ϕ(α𝑢) ϕ(α 𝑢 +  𝑚)

because is in the kernel, I can add it and that is precisely . The uniqueness, I did𝑚 ϕ(𝑥)

not prove. I should have done it even there. So, uniqueness we always have, namely.

Suppose you have two elements. You have . Then(𝑥,  𝑦
1
) = (𝑥,  𝑦

2
) = ϕ(𝑥)   ∀𝑥 ∈ 𝐻

you have . So, you put so you get(𝑥,  𝑦
1

− 𝑦
2
) = 0  ∀𝑥 𝑥 = 𝑦

1
− 𝑦

2

.  So, you always have a unique vector.||𝑦
1

− 𝑦
2
||2 = 0 ⇒ 𝑦

1
= 𝑦

2
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This proves the Riesz Representation theorem. Namely, every continuous linear

functional, in fact, so we have even identified what that vector is. So, you have to take a

vector, unit vector in the one dimensional orthogonal complement of the kernel and then

you put . So, you may have some doubt that since it is one dimensional, there willϕ(𝑢) 𝑢

be two vectors. and both with norm 1. But then, if I take or𝑢 − 𝑢 ϕ(𝑢) 𝑢 ϕ(− 𝑢) (− 𝑢).

It is the same. This is equal to = . So, this vector will not change.ϕ(𝑢) 𝑢 ϕ(− 𝑢) (− 𝑢) 𝑦 

So, the uniqueness will not change. So, the uniqueness is contradicted.
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So, now, let us prove the reflexivity of this thing. Before that, let me look at the map

. If I take𝑥 ↦ 𝑓
𝑥

𝑓
α 𝑥+β𝑦

(𝑧) = (𝑧,  α 𝑥 + β𝑦) = α‾ (𝑧, 𝑥) + β‾  (𝑧, 𝑦) = (α‾  𝑓
𝑥

+ β‾  𝑓
𝑦
) (𝑧)

so, = . So, this is a conjugate linear map, it is not just a linear map.𝑓
α 𝑥+β𝑦

α‾  𝑓
𝑥

+ β‾  𝑓
𝑦

So, we have , then we have . Now, we are going to give a natural inner product on𝐻 𝐻* 𝐻*

. So, define an inner product on . So, any element of is of the form ,so we define𝐻* 𝐻* 𝑓
𝑥

. We want to check that this definition takes all the property of inner(𝑓
𝑥
,  𝑓

𝑦
) = (𝑦, 𝑥)

products. Let us take and therefore that(𝑓
𝑦
,  𝑓

𝑥
) = (𝑥,  𝑦) = (𝑦,  𝑥) = (𝑓

𝑥
,  𝑓

𝑦
)   

property is true.



Now, what about linearity in the first variable? So, what about ?𝑓
𝑥

. We know, the Riesz map, so this is called,(𝑓
𝑥
,  𝑓

𝑥
) = (𝑥,  𝑥) = ||𝑥||2 = ||𝑓

𝑥
||2 𝑥 ↦ 𝑓

𝑥

is called the Riesz map. And that is an isometry and therefore you have this. So, we now

check about the linearity in the first variable. So, it will be conjugate linear in the second

variable automatically because of the conjugacy condition here and therefore, we have to

take But this, we just saw, nothing but(α 𝑓
𝑥

+ β 𝑓
𝑧
,  𝑓

𝑧
)

(𝑓
α‾  𝑥+β‾  𝑦

 ,  𝑓
𝑧
) = (𝑧,  α‾  𝑥 + β‾  𝑦) = α(𝑧,  𝑥) + β(𝑧,  𝑦) = α( 𝑓

𝑥
,  𝑓

𝑧
) + β( 𝑓

𝑦
,  𝑓

𝑧
)

Therefore, the distributive law, linearity in the first variable is well defined. So, therefore,

this defines the genuine inner product on the space.
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So, now again, we can define. So, , is a Hilbert space and therefore you can define an𝐻*

inner product on in the same way using the Riesz map. Now, Riesz map is always𝐻**

onto. So, now, we have two maps going from to . One is a canonical map .𝐻 𝐻** 𝑥↦𝐽
𝑥
 

What is ? . This is the evaluation map. So, this is one map.𝐽 𝑥 𝐽
𝑥
(𝑓) = 𝑓(𝑥)



The other map from to is . is a Riesz map from to . So, we want to𝐻 𝐻**  𝑥 ↦𝑓
𝑓

𝑥

𝑓
𝑓

𝑥

𝐻 𝐻**

show that these are one and the same. So, let . Then for some . So,𝑓 ∈ 𝐻* 𝑓 = 𝑓
𝑦

𝑦 ∈ 𝐻

. Now, .𝑓
𝑓

𝑥

(𝑓) = 𝑓
𝑓

𝑥

(𝑓
𝑦
) = (𝑓

𝑦
 ,  𝑓

𝑥
)

*
= (𝑥,  𝑦) 𝐽(𝑥)(𝑓) = 𝐽

𝑥
(𝑓

𝑦
) = 𝑓

𝑦
(𝑥) = (𝑥,  𝑦)

So, these two are the same. So, is nothing but . But we know that the Riesz map𝐽(𝑥) 𝑓
𝑓

𝑥

is onto. So, this means that is onto and therefore is reflexive. So, starting from first𝐽 𝐻

principles, we have shown that Hilbert space is reflexive and that the Riesz representation

theorem is true.
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Now, if you look at the map, Riesz map, , , this is isometry and linear, if you are𝑓 𝑥 ↦ 𝑓
𝑥

working with , and conjugate linear if is the base field. So, it is not a big deal if youℝ ℂ

have a conjugate linear map but, in particular if is a real Hilbert space, we can identify𝐻

with . Because we have an isometric isomorphism, we have been doing this𝐻 𝐻*



repeatedly. In fact, we have already done it in case of , etc and the space . All these𝑙
2

𝑙
2
𝑛 𝐿2

spaces, we have actually identified the dual. We have often used it like that.

So, now, the question is can we always do it or can we exercise some caution? So, there

are some situations where you should not blindly do it. A typical situation is the

following.

Caution. Cannot identify all Hilbert spaces with dual simultaneously when dealing with

families of Hilbert Spaces. So, let me give you a typical example.

Let and be Hilbert spaces. And so, we have and as the norms and then𝑉 𝐻 ||. ||
𝑉

||. ||
𝐻

you have the inner product and the inner product such that (i) is(.  ,  . )
𝑉

(.  ,  . )
𝐻

𝑉

included in . That means that is a subspace of as an algebraic set and the inclusion𝐻 𝑉 𝐻

is continuous. That is, is contained in and there exists a constant such that𝑉 𝐻 𝐶 > 0

norm . (ii) is dense. So, it is a dense and continuous||𝑣||
𝑉

≤ 𝐶 ||𝑣||
𝐻

  ∀ 𝑣 ∈ 𝑉 𝑉 ⊂ 𝐻

inclusion.
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Now, let us identify, with via the Riesz map. So, we can do that, that is no harm. So,𝐻 𝐻*

the question is, can I also identify , so can we also identify with ? So, the answer is𝑉 𝑉 𝑉*

no because of the following reason.
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Let us take any . Then consider . So, what is ? By the𝑓 ∈ 𝐻 𝑣 ↦ (𝑣,  𝑓)
𝐻

|(𝑣,  𝑓)|
𝐻

Cauchy-Schwarz, . So, this is a continuous|(𝑣,  𝑓)|
𝐻

≤  ||𝑣||
𝐻

 ||𝑓||
𝐻

≤  𝐶 ||𝑓||
𝐻

 ||𝑣||
𝑉

linear functional in . So, that means generates a continuous linear𝑉 𝑣 ↦ (𝑣,  𝑓)
𝐻

functional, an element of . So, let us call it . So, . Then,𝑉* 𝑇(𝑓) 𝑇(𝑓)(𝑣) = (𝑣,  𝑓)
𝐻

is 1-1, Why is it true? Because if you have , this means𝑓 ↦ 𝑇(𝑓) 𝑇(𝑓
1
) = 𝑇(𝑓

2
)

, but is dense in implies(𝑣,  𝑓
1

− 𝑓
2
)

*
= 0,     ∀𝑣 ∈ 𝑉 𝑉 𝐻 (𝑣,  𝑓

1
− 𝑓

2
)

𝐻
= 0   ∀ 𝑣 ∈ 𝐻.

If you put , you will get . So, this is a one to one map. So, we can𝑣 = 𝑓
1

− 𝑓
2

𝑓
1

= 𝑓
2

consider, can be thought of as the same. And , we have seen that𝐻 ||𝑇(𝑓)|| ≤ 𝐶 ||𝑓||
𝐻

and therefore this is in fact a continuous inclusion in this.



Now, we claim that this is also dense. So, we want to show that if you have a continuous

linear functional which vanishes on , then we show . So, that will mean ϕ ∈ 𝑉** 𝐻 ϕ = 0

is also dense.𝐻
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Why is that so? Because, well is a Hilbert space so it is also reflexive. So, that implies𝑉

such that So, that means , we have∃ 𝑥 ϕ(𝑓) =  𝑓(𝑥),    ∀𝑓 ∈ 𝑉* . ∀𝑓 ∈  𝐻 𝑇(𝑓)(𝑥) = 0

that is, . But then and therefore I can put . So, I get(𝑥,  𝑓)
𝐻

= 0  ∀𝑓 ∈ 𝐻 𝑉 ⊂ 𝐻 𝑓 = 𝑥

, that means .(𝑥,  𝑥) = ||𝑥||2 = 0 ⇒ 𝑥 = 0 ϕ = 0

Conclusion. So, if is continuously embedded in and this is a dense inclusion and if I𝑉 𝐻

identify with , then is also embedded in and this inclusion is also dense.𝐻 𝐻* 𝐻 = 𝐻* 𝑉* 

Now, if I also identify with , that will be absurd because if and you have𝑉 𝑉* 𝑉 = 𝑉* 𝐻

in between and ; then all of them are equal and you know, they are not. So, it is not𝑉 𝑉*

correct to identify.



Therefore, when you have a family of Hilbert Spaces which are connected to each other

like this, then choose one space which we call the pivot space where we identify the

space with dual but all other spaces, you will have, that the duals are the same.When you

study, especially in the case of Sobolev Spaces, this will be the case. So, we will have a

Sobolev space called . There will be spaces like this. contained in which is𝐻
0

1 𝐻
0

2 𝐻
0

1

contained in and that we will assume is its dual and that will be , that is the dual of𝐿2 𝐻−1

this space contained in which will be the dual of this space and so on.𝐻−2

And therefore, we will have a whole chain of Sobolev spaces and their duals. We will not

confuse , there is a Riesz map, when you want to only study these two. But when you𝐻1

are studying it together with , you must have only one space which is identified and the𝐿2

other spaces should not. So, we will continue with this.


