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We will now study about Duals of Hilbert Spaces. So, we have the following theorem.
Again, it is called the Riesz Representation Theorem because it gives you a

representation of the element of the dual.

Theorem (Riesz Representation Theorem): Let H be a Hilbert Space. Let ¢ € H*. Then
J aunique y € H such that p(x) = (x, y) Vx € H. Further, ||d|| = ||y|]-

We already saw that if you have y € H, then fy given by (x, y) gives you a linear

functional whose norm is equal to the norm of the vector. Now, we say that every linear

functional occurs in this fashion.
Proof. If y € H, then fy(x) = (x, y) defines a continuous linear functional and by the
Cauchy-Schwarz inequality, || fy|| = ||y||. This, we have already seen in an example last

time. Now, we have to show that every mapping occurs in this way. So, if you take the



mapping ¢: H N namely ¢(y) = fy. So, this is an isometry into H. So, the image

of ¢ is closed and all we have to show, to show ¢ is onto, enough to show the image of ¢
is dense. Since the image of ¢ is already closed since you have an isometry, so it is

enough to show that the image is dense. So, that will complete the proof. So, you

consider a linear functional. Let us say y € H which vanishes on the image of ¢. To

show, Y = 0. Hilbert spaces are uniformly convex, H Hilbert space = H is reflexive.

Therefore, 3x € H Vf €H. So, if you take any fy € image of ¢, so
W(F) = £, = @ ).
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This implies that x € H such that (x, y) = 0 Vy € H. In particular, this implies that

(x, x) = 0, that is, ||x||2 = 0 = x = 0. And that implies that {y = 0 and therefore,
the image is dense and consequently we have shown that ¢ is onto and therefore the

Riesz Representation theorem is completely proved.
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So, now, we can directly prove.

Proof. “ab initio” That means from first principles that H is reflexive and Riesz
Representation theorem holds. In fact, we will first prove the Riesz Representation
theorem and then from that, we will deduce that H is reflexive. Up till now what have we
done? We have used uniform convexity and the fact that uniform convex spaces are
reflexive and we prove the Riesz Representation theorem. Here, we will now directly
prove the Riesz Representation theorem without using any machinery and then deduce in

fact that H is reflexive. It is good to know both the proofs.

Let us assume that ¢ is not identically 0. If it is 0, then the 0 vector is there so we do not

need to do anything. So, @ # 0. So, 3u € H such that ¢(u) # 0. Letus take v € H

and then look at v — %u. You can divide because ¢(u) # 0. Now,
v — 20 e Ker ¢ because ¢p(v — Mu) = ¢o(v) — d(wWd(v)/Pp(w) = 0. This

bw) d(u)

implies that Ker ¢ = M has codimension 1. Namely, it is, the complement of that is 1

dimensional. It is spanned by a vector u such that ¢(u) # 0. Therefore, let us take

ueM (the orthogonal complement) and such that ||u|]| = 1. And now, you put

y = ¢(u) u. I am doing the complex case always so, up to now, in Banach space theory,



I have said, worked with reals and then said the complex case will be the same proof and
also in case there was a difference like the Hahn Banach Theorem, I made special
mention of that fact. In the case of Hilbert spaces, I will naturally work with complex
numbers because there is conjugation which always comes into play and it is better to
check everything if that is okay and then if the real case will be obvious because you do
not have to put the conjugate at all. So, we will always work with the complex numbers

as the base field. Now, if you take any x € H, then x can be written as

x=m+ oau, m € M. Now, (x,y) = (m + au, $(u)u). Now, m and u are

orthogonal because m is in M, u € M. Therefore, (m, ¢(u)u) = 0 so you get

xy) =m+ au, pWu) = adW)(w, v) = adpw) = d(aw)=p(au + m)
because m is in the kernel, I can add it and that is precisely ¢ (x). The uniqueness, I did

not prove. I should have done it even there. So, uniqueness we always have, namely.

Suppose you have two elements. You have (x, yl) =y 2) = ¢p(x) Vx € H. Then

you have (x, Y, ~ yz) =0Vx. So, you put x = y,— Y, so you get

||y1 — yz||2 =0= Y, =V, So, you always have a unique vector.
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This proves the Riesz Representation theorem. Namely, every continuous linear
functional, in fact, so we have even identified what that vector is. So, you have to take a
vector, unit vector in the one dimensional orthogonal complement of the kernel and then
you put ¢(u) u. So, you may have some doubt that since it is one dimensional, there will
be two vectors. u and — u both with norm 1. But then, if I take ¢d(w) u or ¢(— w) (— w).
It is the same. This is equal to ¢(u) u = d(— u) (— w). So, this vector y will not change.

So, the uniqueness will not change. So, the uniqueness is contradicted.
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So, now, let us prove the reflexivity of this thing. Before that, let me look at the map
x> f Ifltake f . (2) = (z ax + By) = a(z,x) +B(zy) = (af +B )@

S0, fa By &fx + ny. So, this is a conjugate linear map, it is not just a linear map.

So, we have H, then we have H . Now, we are going to give a natural inner product on H

. So, define an inner product on H *. So, any element of H ) is of the form fx ,50 we define

(fx, fy) = (y,x). We want to check that this definition takes all the property of inner

products. Let us take (fy, fx) =y =0 %)= (fx, fy) and therefore that

property is true.



Now, what about linearity in the first wvariable? So, what about fx?

(f, f) =@ x) = ||x||" = |If_|I". We know, the Riesz map, so this is called, x - f

is called the Riesz map. And that is an isometry and therefore you have this. So, we now
check about the linearity in the first variable. So, it will be conjugate linear in the second
variable automatically because of the conjugacy condition here and therefore, we have to

take  (a fx + B fZ, fz) But  this, we just saw, nothing but

(Foriz ) = (G ax +By) = «@ ) + Bz ) = a(f, f) + B(f, f)

Therefore, the distributive law, linearity in the first variable is well defined. So, therefore,

&x+[_3y

this defines the genuine inner product on the space.
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So, now again, we can define. So, H , is a Hilbert space and therefore you can define an
inner product on H in the same way using the Riesz map. Now, Riesz map is always

*
onto. So, now, we have two maps going from H to H . One is a canonical map x~J .
X

What is J x? ]x(f) = f(x). This is the evaluation map. So, this is one map.



The other map from Hto H is x '—>ff . ff is a Riesz map from H to H . So, we want to

show that these are one and the same. So, let f € H . Then f= fy forsomey € H. So,
£, =f,(F) =, f).= @y Now, JeO) =) =F,9 = (x ).

So, these two are the same. So, J(x) is nothing but f ;- But we know that the Riesz map

X

is onto. So, this means that J is onto and therefore H is reflexive. So, starting from first
principles, we have shown that Hilbert space is reflexive and that the Riesz representation

theorem is true.
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Now, if you look at the map, Riesz map, f, x = fx, this is isometry and linear, if you are

working with R, and conjugate linear if C is the base field. So, it is not a big deal if you

have a conjugate linear map but, in particular if H is a real Hilbert space, we can identify

*
H with H . Because we have an isometric isomorphism, we have been doing this



repeatedly. In fact, we have already done it in case of lz, l; etc and the space L%, Al these

spaces, we have actually identified the dual. We have often used it like that.

So, now, the question is can we always do it or can we exercise some caution? So, there
are some situations where you should not blindly do it. A typical situation is the

following.

Caution. Cannot identify all Hilbert spaces with dual simultaneously when dealing with

families of Hilbert Spaces. So, let me give you a typical example.

Let V and H be Hilbert spaces. And so, we have ||. ||V and |[|. ||H as the norms and then
you have the inner product (., .)V and the inner product (., .)H such that (i) V is

included in H. That means that V' is a subspace of H as an algebraic set and the inclusion
is continuous. That is, V is contained in H and there exists a constant C > 0 such that

norm ||v||V <cC ||v||H Vv € V. (i) V € H is dense. So, it is a dense and continuous

inclusion.

(Refer Slide Time: 22:51)

N Wb tpocsn, WG b e P

A
; : \J
A VAR te. NCM, 3 Cre of. “"‘\\45‘“"“\(;7‘;1
%ué\é\.
() N ey e

Lax wn MQ\.& 1wk A @mﬂm%m=@>.
Lo we a8 {Mﬂ N u;rkk\/‘?'




Now, let us identify, H with H via the Riesz map. So, we can do that, that is no harm. So,

the question is, can I also identify V, so can we also identify VV with V' ? So, the answer is

no because of the following reason.
(Refer Slide Time: 23:44)
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Let us take any f € H. Then consider v~ (v, f)H. So, what is |(v, f)|H? By the
Cauchy-Schwarz, |(v, f)lH < ||v||H ||f||H < C||f||H ||v||V. So, this is a continuous

linear functional in V. So, that means v~ (v, f)H generates a continuous linear

functional, an element of v So, let us call it T(f). So, T(f)(v) = (v, f)H. Then,
fe-T(f) is 1-1, Why is it true? Because if you have T(f1) = T(fz), this means
(v, f1 — fz)* =0, Vv € V,butV is densein H implies (v, f1 — fZ)H =0 Vv EH.
If you put v = f1 — fz, you will get f1 = fz. So, this is a one to one map. So, we can
consider, H can be thought of as the same. And ||T(f)|| < C||f ||H, we have seen that

and therefore this is in fact a continuous inclusion in this.



Now, we claim that this is also dense. So, we want to show that if you have a continuous

linear functional ¢ € v which vanishes on H, then we show ¢ = 0. So, that will mean

H is also dense.
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Why is that so? Because, well V is a Hilbert space so it is also reflexive. So, that implies

3 x such that d(f) = f(x), Vf € v So, that means Vf € H,wehave T(f)(x) = 0
that is, (x, f)H = 0 Vf € H.Butthen V c H and therefore I can put f = x. So, I get

(x, x) = ||x||2 = 0= x = 0, that means ¢ = 0.
Conclusion. So, if V is continuously embedded in H and this is a dense inclusion and if I
identify H with H*, then H = H _is also embedded in V' and this inclusion is also dense.

Now, if I also identify V with V*, that will be absurd because if V = V* and you have H

in between V and V' ; then all of them are equal and you know, they are not. So, it is not

correct to identify.



Therefore, when you have a family of Hilbert Spaces which are connected to each other
like this, then choose one space which we call the pivot space where we identify the
space with dual but all other spaces, you will have, that the duals are the same.When you

study, especially in the case of Sobolev Spaces, this will be the case. So, we will have a

Sobolev space called H 01. There will be spaces like this. H 02 contained in H 01 which is

contained in L2 and that we will assume is its dual and that will be H _1, that is the dual of

this space contained in H 2 which will be the dual of this space and so on.

And therefore, we will have a whole chain of Sobolev spaces and their duals. We will not
confuse H 1, there is a Riesz map, when you want to only study these two. But when you

are studying it together with LZ, you must have only one space which is identified and the

other spaces should not. So, we will continue with this.



