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See some examples. 

Example  1.  Let  us  take  V=RN with  the  ¿∨.∨|1.  Recall  that  ¿|x||1= ∑
i=1 ,… ,N

¿ x i∨¿¿,  where

x=(x1 ,…, xN). So, in short notation, RN  with ¿∨.∨|1 will be denoted as l1
N .

Let W  be any norm linear space, and T : l1
N↦W  be a linear map, then T  is continuous. So, every

linear map from l1
N  into any norm linear space is automatically continuous. So, how do we show

this? 

Let us take e i=(0 ,… ,1 (i th ) , ..0) to be the standard basis vector. Then, every x can be written as

x= ∑
i=1 , ..,N

x i ei. Therefore, by linearity, T (x )= ∑
i=1 ,.. ,N

x iT (e i). Let us take K=max
i=1 ,…,

{||T (e i )||}. Now,

by the triangle  inequality,  we get  that  ||T ( x )||W ≤ ∑
i=1, .. ,N

|x i|||T (ei )||W ≤K||x||1.  Therefore,  by the

definition of continuity, T  is a continuous map. So, this shows that every linear map from l1
N  to

any norm linear space is automatically continuous.
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Example 2. Let us take  V=lp ,1< p<∞ and  x=(x i) would be a sequence. And you know that

∑
i=1 ,… ,∞

|x i|
p
<∞.  Recall  p¿ is the conjugate exponent of  p, that means  

1
p
+
1
p¿=1. Then define

f (x )= ∑
i=1,…,∞

xi y i where  y=( y i )∈ lp¿.  Then,  this  is  a  linear  functional.  First  of  all,  is  it  well

defined? It is, because |f ( x )|≤ ∑
i=1,… ,∞

¿ xi y i∨¿≤||x||p||y||p¿¿(Holder’s inequality). 

Therefore, this is not only well defined, it tells you that this is a continues linear function. So this

implies that f  is a continuous linear functional and||f||≤||y||p¿.

 One  of  the  theorems  which  we  will  prove  in  this  course  is  that  every  continuous  linear

functional on l pwill occur in this way. This is the only way, these are the only functionals. And in

fact, you have equality ||f||=||y||p¿ and we can show that the dual space l p
¿  is nothing but l p¿. That

is why we have given the conjugate exponent’s notation as p¿. This is the theorem which we will

prove later.

The above example gives you an example of a continuous linear functional.  We have given

examples in finite dimensions and example in sequence spaces. So, now let us look at function

spaces. 

Example 3. Let us take V=C [0,1] to be a base space with ||f||=max
x∈[0,1]

¿ f (x )∨¿¿. 

Now, let  K : [0,1 ]× [0,1 ]↦R be a continuous function i.e., we take a continuous function in two

variables. 
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Then we define: for f ∈V , I am going to define the following function.

           (Tf ) (s )=∫
[0 , s]

K (s ,t ) f (t )dt

This is called Volterra integral operator. We want to show two things. One is Tf ∈V  and second

is T :V ↦V  is continuous. Clearly, it is linear, so we want to show these two things. 
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Since K  is continuous on the compact set [0,1 ]×[0,1 ], it is uniformly continuous and bounded.

Let  us  say  we  have  the  |K (s ,t )|≤k for  some  constant  k .  Also,  given  any  ϵ>0,  since  it  is

uniformly  continuous,  therefore  there  exists  δ>0 such  that  ¿ s1−s2∨¿ δ implies

|K ( s1 , t )−K (s2 , t )|<ϵ  for all  t . In fact, much more is true. Here, I am using very little of the

uniform continuity, you can also vary t  within some similar δ , but I am going to take it only for

a fixed t .

So, now we take

               (Tf ) (s1)−(Tf ) (s2 )= ∫
[0 , s1]

K (s1 , t )−K ( s2 , t ) f ( t ) dt + ∫
[s2 , s1]

K ( s2 , t ) f ( t ) dt

So I have just added and subtracted things (if you write out the two formulae, you will get this).

Thus, if   |s1−s2|<δ

                          |(Tf ) (s1 )−(Tf ) ( s2 )|≤ϵ||f||s1+k||f||δ≤ (1+k )||f||ϵ .

This shows that   Tf  is a continuous function.

Also, we have that  ||(Tf ) ( s )||≤ k||f||s≤ k∨|f|∨¿ t. If we take the maximum over  s, we get that

||Tf||≤ k||f||. Therefore, T  is continuous and linear.
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So we have seen some examples of mappings which are continuous linear mappings. Let me give

you finally an example of a mapping which is not continuous but linear. Let me take C1
[0,1 ], the

space of continuously differentiable maps on [0,1] to R. Since this is a sub space ofC [0,1], we

can put the same norm as in C [0,1]. Now we define T :C1 [0,1 ]↦C [0,1] (both with the spaces are

equipped  with  the  same  sup  norm).  Define  T ( f )=f ',  the  first  derivative  of  f .  Since  every

function in C1
[0,1 ] is differentiable and the derivative is continuous, so this makes sense.

I want to show that this is a linear map but this is not continuous. Let us take f n ( t )=tn. Then what

is ( f n )=f n
' ? T ( f n )=n tn−1. Now, ||f n||=1 and ¿

So, we we can never have an inequality like ||T ( f )||≤k||f||. Because if we put f=f n, then n≤ k

for all n. That is impossible because n→∞, but k   is a fixed number. So, this is an example of a

mapping which is not continuous mapping but which is nevertheless, linear. Now we will look at

some other properties like isomorphism between norm linear spaces.


