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We will now start a very important chapter. This is called Hilbert Spaces. So, Banach

spaces and Hilbert spaces dominate functional analysis. A Hilbert space is a Banach

space with some geometry built in. In particular, we say when two vectors are orthogonal

to each other or at right angles to each other, so we in fact, we introduce a notion of an

angle.

. .2 . . 2
How is it defined in R ? For instance if you take the plane R and you have two vectors,

X = (xl, xz), and y = (yl, yz), then |x| = ||x||2, that is the norm in l;,. Then, what do

you have? You have what is called the inner product x. y = [|x|| ||y|| cos 6.



TT

So, you say two vectors are orthogonal to each other, if 8 is the angle between them is -

That is, COS(%) = 0, so if x. y = 0, we say two vectors are orthogonal and x. y can

. 2 . .
also be written as x YTy, and we have x. x = x|, that is, the inner product

generates the norm and it is linear in each of the variables. It is linear in x and y. So, we

generalize all these things and define an inner product.

Definition: Let V be a real non linear space and inner product on V is a function

(., ): V xV - Rsuch that
(1) it is symmetric, that is, for every x, y € V, you have (x, y) = (y, x).

(11) it is bilinear, that means (ax + By, z) = a(x, z) + B(y, z) forallx, y, z €V
and for all o, B € R. It is also linear in the second variable because you know, you can

either change by symmetry, it also means that it is linear in the second variable.

2
(i) (x, x) = |[x|| .
Such a bilinear form is called an inner product. So, now what happens if you have

complex, so if V is over C, then (i) becomes (x, y) = (y, x).
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It is linear in the first wvariable and therefore this means we have

(x,ax + By) = o (x, z) + E (v, z). So it is linear in the first variable. It is conjugate
linear in the second variable and such a form is called a sesquilinear form. So that is,

these are the changes you have to make when you are dealing with C.

Definition. A Hilbert space is a complete inner product space, that is it is a Banach space

whose norm is generated by an inner product.

(Refer Slide Time: 06:41)

& (@ wa 5 - (€ w,) ;%E
n " o
ﬂuia\ Z é-«. (%, = ._Z’u_i NPTEL

€ 2. b, 2e=br) g=ly)
LR () = Ty e togp=Z .

éaj; LTG0 (A06) reasua of-
R (f19) = ;5&%# Q) Gp= XLtg:\fL.

2 5 2
2ot = (g 2ora) = e+ QL+ 1yl

C,av‘(hu Gone". \ x\\z-t 2&(1,3) 4 I\éllg

2 :
MgV = Do 29 40

[ -
Example 1: We have (]RN, [ 1] 2). This is the space llzv. So, you define the inner product
n N n _
(x,y) =3 Xy, . If you take (C, ||. ||2), then you define (x, y) = ). Xy, . So, this is
i=1 i=1

: : 2 :
obviously the inner product because you have (x, x) = ||x|| and the other properties

are immediate to verify.



Example 2: l2 again, if you have x = (xl,), y = (yi). Then if l2 is over R, then you

[oe]

define the inner product as (x, y) = ). Xy, and this is well defined, it is convergent
i=1

because by Holder’s inequality (x, y) < ||x|| ||y|| and therefore this is well defined and

[oe]

then if you have l2 over C, then you define (x, y) = ) X ;l
i=1

Example 3: Lz(u). So, if you have (X, S, 1) is a measure space, then Lz(u) is Hilbert

space, well it is complete and now the inner product, you can easily guess is nothing but

(f, 9) = [ fgdu, if the base field is R. If the base field is C, you have
X

f, 9 =[f Edu. So this gives you Hilbert spaces. So now, I will mostly deal with
X

reals, wherever complex needs to be mentioned, I will tell you what is the change to

make.

So, ||x + y||2 =x+yx+y = ||x||2 + 2(x, y) + ||y||2, you use linearity and

develop this. In the complex case, you have

2 2 -— 2 2 2
lx + yll" = llxll" + (x ¥) + (6 ») + Iyl =[xl + 2R, ») + Iyl
So now, if I similarly write ||x — y||2 = ||x||2 - 2(x, y) + ||y||2 (real case) and

2 2 2
[lx — yII” = |lx]]” = 2R(x, y) + ||¥]|” (complex case).
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If you add these two, you get |52 ||2 + ||’“;—y||2 =2 (Ixll* + 1IyII), this is what is

called the parallelogram identity, and this in 2 dimensions is called the Apollonius

theorem and we have seen this.

Remark. A theorem of Frechet Jordan and Von Neumann states that a Banach space
where the parallelogram law identity is valid, is in fact a Hilbert Space. That means you
can write down an inner product which generates a norm. Once you have the

parallelogram identity, you can use it to do it.
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Example: C[— 1, 1] is a Banach space with a sup norm and cannot be made into a
Hilbert space. You can do it with C[0, 1] but it is easier to write it with C[— 1, 1]. That
means the parallelogram law will fail. So, you define u(x) = min (x, 0). So that means,
how does a graph of u(x) look like? When x is negative, it takes the value x and then

when x becomes positive, then it is 0. Then v(x) = x. So, these are the two functions u

1

2

and v. Then ||u||oo = ||v||oo = 1, you can easily see. So || uJer

= 1and||u_

v
2
©

and you see that the parallelogram law fails for these pairs of functions.
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Theorem. H Hilbert. H is uniformly convex and hence, it is reflexive.

Proof. ||x|| < 1 and [|y|| £ 1, ||x — y|| > €, then from the parallelogram law, you

2 2
will get || x;ry || <1- ET = (1 - 8)2 for suitable € and therefore you have uniform

convexity and we know that every uniformly convex space is a reflex. So, every Hilbert

space is reflexive.
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Now, when p = 2 = p*, Holderz Cauchy-Schwartz and what does it mean? In the

notation which I wrote earlier, |(x, y)| < ||x]|| 5 [y|] - So, this is the Holder inequality

appliedtop = 2 = p* and (x, y) =Y, Xy i =1tonor i = 1to oo, whatever space

you are working with. So, this is in fact a fundamental property of Hilbert spaces. So, we

have the following theorem.
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Theorem: (Cauchy-Schwarz inequality) H is a Hilbert space and x, y € H. Then,
[(x, ¥)| < |Ix]| |ly]| - This is a very fundamental inequality which will be used again
and again and again. Equality occurs if and only if x and y are scalar multiples of each

other.

Proof. We will do it for the complex case, the real case will be a particular case of that.

So, let us assume, 8 € C such that |8] = 1 and 8(x, y¥) = |(x, ¥)|. We have done this

. . . . i0
before, in various examples. Given a complex number can be written as r e . So any

complex number can be written as a number with modulus 1.

If te R, we have 0 < ||0x — ty||2. So, let us expand this. This will give you

lxll? = 2t RO x, y) + £7|y]I°  as [8] = 1. Now, what is R(@x y)? So,
Bx, y) = 6(x, ¥) = |(x, ¥)|, it is a real number anyway. So,

2 2 2 2 .
[10x — ty|| = |Ix|]| — 2t|(x, y)| +t||ly]| = 0. So, you have a quadratic
polynomial which is non negative, which is of constant sign. That means, you are having
a parabola which never changes sign. That means it does not have any real roots, that

means its roots are imaginary. So, this is true for all t € R and therefore, you have that
. ) . . 2
the roots of this quadratic should be imaginary. So, b < 4ac, that means

41, WIZ < 4 11x|1° |1y1]° and that implies |(x, )|° < [1x]|° |[7]]. So, that proves the

Cauchy-Schwarz inequality which is a fundamental inequality as I said.

So, if you want equality in this, you should have that the roots should be equal. That

means 0 x should be equal to t, v, where t, is a root of this quadratic polynomial and that
proves whatever we wanted to prove. Because you want equality means,

||x||2 - 2t|(x, )| + t2||y||2 = 0 only then, so that means t must be a root of this

thing and it should be a perfect square and therefore you have 6 x = ty.
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Corollary. H Hilbert and y € H. So, define fy(x) = (x,y) Vx € H. Now, I am

writing in this fashion with y in the second coordinate, so that it is linear in the first
coordinate and therefore even in the complex case or real case, it does not matter which,

this is always a linear functional. Therefore, by the Cauchy-Schwarz | fy(x)l < |lx|| lIyll

Therefore, fy € H and ||fy|| < ||y]]. So, assume that y # 0 and you take x = —=— .

Iyl
So, ||x|] = 1 and fy(x) = (ﬁ, y) =||||y—y||||2 = ||y||. So, the maximum is reached on
the unit sphere and this implies || fy|| = ||y||. So, this is the proof. Let me state the
theorem. fy €H and || fy|| = ||y||. So, that was the corollary and I have already
proved it.

So, we will see in the next chapter that every continuous linear functional, in fact arises in
this fashion. So, H is isomorphic to its own dual and so very often, especially in the real

case we can identify the two.
Corollary. H Hilbert. Let x weakly converge to x and y  converge to y. Then, (xn, yn)

converges to (x, y). So, when you have two, an inner product and one term converges
weakly and one term converges strongly, then the limit is still natural, whatever you

expect. So, if both of them are weak, then you cannot expect it.Like, for instance in Lp



2
spaces also we saw an example. cos nt went weakly to 0, but cos nt went weakly to %

So, you cannot expect normally, when you are dealing with the product of weak
convergence to behave properly, you do not know what will happen but if one is weak

and one is strong, then you are on safe ground.
Proof. [(x, ¥ ) — (x VI < |, ¥, — M| + I(x, = % Y)I.
Now, by Cauchy-Schwarz inequality, [(x , v — »)| < [|x || [ly_— ylI.

G, v) = Co L= llx [y, = Yl +1f (x, =0l = Mlly =yl +If (x, — %)

as every weakly convergence sequence is bounded.



(Refer Slide Time: 25:49)

* STy
f—ue A — “ﬁa\\ & \%\\, 5%}
(S v
o oz ¥ Am= ey = =gl NPTEL
3 = % % 3
=)\ {La\\ = !\%\\

Lo BBk, LY ez ond 323 Tam (g‘m\—s(xa}
fﬁ_,_ | o=l &\ Lo, g, + \’(*“‘3‘3‘3\\

< Ny g+ \ £C1(R“' 0l
< Miiga-yN +\J37C!~;1)]
J +

o (=} B
Q\a@h‘o\a} S P X Z_U,\—;«e_ =) Iy =0y

The first one goes to 0 because y_ converges to y strongly and the second term goes to 0
because X ~converges to x weakly and therefore (xn, yn) converges to (x, ¥). In
particular, if X =X and y =Y, both of them are strong, then (xn, yn) - (x, ¥). Thatis

now obvious that you could have done it in many ways directly. But now you know if it

converges in norm, then it converges weakly. So, X =X weakly as well and y =y in

norm and therefore you have this.



