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We will now start a very important chapter. This is called Hilbert Spaces. So, Banach

spaces and Hilbert spaces dominate functional analysis. A Hilbert space is a Banach

space with some geometry built in. In particular, we say when two vectors are orthogonal

to each other or at right angles to each other, so we in fact, we introduce a notion of an

angle.

How is it defined in ? For instance if you take the plane and you have two vectors,ℝ2 ℝ2

, and , then , that is the norm in ,. Then, what do𝑥 = (𝑥
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you have? You have what is called the inner product .𝑥 .  𝑦 = ||𝑥|| ||𝑦|| cos θ



So, you say two vectors are orthogonal to each other, if is the angle between them isθ π
2 .

That is, , so if , we say two vectors are orthogonal and cancos( π
2 ) = 0 𝑥 .  𝑦 = 0 𝑥 .  𝑦

also be written as , and we have , that is, the inner product𝑥
1
𝑦

1
+ 𝑥

2
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2
𝑥 .  𝑥 = |𝑥|2

generates the norm and it is linear in each of the variables. It is linear in and . So, we𝑥 𝑦

generalize all these things and define an inner product.

Definition: Let be a real non linear space and inner product on is a function𝑉 𝑉

such that(.  ,  .):  𝑉 × 𝑉 → ℝ 

(i) it is symmetric,  that is, for every , you have .𝑥,  𝑦 ∈ 𝑉 (𝑥,  𝑦) = (𝑦,  𝑥)

(ii) it is bilinear, that means for all(α 𝑥 + β 𝑦,  𝑧) = α (𝑥,  𝑧) + β (𝑦,  𝑧) 𝑥,  𝑦,  𝑧 ∈ 𝑉

and for all . It is also linear in the second variable because you know, you canα,  β ∈ ℝ

either change by symmetry, it also means that it is linear in the second variable.

(iii) .(𝑥,  𝑥) =  ||𝑥||2

Such a bilinear form is called an inner product. So, now what happens if you have

complex, so if is over ℂ, then (i) becomes .𝑉 (𝑥,  𝑦) = (𝑦,  𝑥)
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It is linear in the first variable and therefore this means we have

. So it is linear in the first variable. It is conjugate(𝑥, α 𝑥 + β 𝑦 ) = α (𝑥,  𝑧) + β (𝑦,  𝑧)

linear in the second variable and such a form is called a sesquilinear form. So that is,

these are the changes you have to make when you are dealing with ℂ.

Definition. A Hilbert space is a complete inner product space, that is it is a Banach space

whose norm is generated by an inner product.
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Example 1: We have . This is the space . So, you define the inner product(ℝ𝑁,  ||. ||
2
) 𝑙

2
𝑁

. If you take , then you define . So, this is(𝑥,  𝑦) =
𝑖=1
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obviously the inner product because you have and the other properties(𝑥,  𝑥) =  ||𝑥||2

are immediate to verify.



Example 2: again, if you have , . Then if is over , then you 𝑙
2

𝑥 = (𝑥
𝑖
) 𝑦 = (𝑦

𝑖
) 𝑙

2
ℝ

define the inner product as and this is well defined, it is convergent(𝑥,  𝑦) =
𝑖=1

∞

∑ 𝑥
𝑖
 𝑦
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because by Holder’s inequality and therefore this is well defined and(𝑥,  𝑦) ≤  ||𝑥|| ||𝑦||

then if you have over , then you define .𝑙
2

ℂ (𝑥,  𝑦) =
𝑖=1

∞

∑ 𝑥
𝑖
 𝑦

𝑖
 

Example 3: . So, if you have is a measure space, then is Hilbert𝐿2(µ) (𝑋,  𝑆,  µ) 𝐿2(µ)

space, well it is complete and now the inner product, you can easily guess is nothing but

, if the base field is . If the base field is , you have(𝑓,  𝑔) =
𝑋
∫ 𝑓 𝑔 𝑑µ ℝ ℂ

. So this gives you Hilbert spaces. So now, I will mostly deal with(𝑓,  𝑔) =
𝑋
∫ 𝑓 𝑔 𝑑µ

reals, wherever complex needs to be mentioned, I will tell you what is the change to

make.

So, , you use linearity and||𝑥 + 𝑦||2 = (𝑥 + 𝑦,  𝑥 + 𝑦) = ||𝑥||2 + 2(𝑥,  𝑦) + ||𝑦||2

develop this. In the complex case, you have

.||𝑥 + 𝑦||2 = ||𝑥||2 + (𝑥,  𝑦) + (𝑥,  𝑦) + ||𝑦||2 = ||𝑥||2 + 2 ℜ(𝑥,  𝑦) + ||𝑦||2

So now, if I similarly write (real case) and||𝑥 − 𝑦||2 = ||𝑥||2 − 2(𝑥,  𝑦) + ||𝑦||2

(complex case).||𝑥 − 𝑦||2 = ||𝑥||2 − 2ℜ(𝑥,  𝑦) + ||𝑦||2
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If you add these two, you get , this is what is𝑥+𝑦
2

|| |||| ||
2

+ 𝑥−𝑦
2

|| |||| ||
2

= 1
2 (||𝑥||2 + ||𝑦||2)

called the parallelogram identity, and this in 2 dimensions is called the Apollonius

theorem and we have seen this.

Remark. A theorem of Frechet Jordan and Von Neumann states that a Banach space

where the parallelogram law identity is valid, is in fact a Hilbert Space. That means you

can write down an inner product which generates a norm. Once you have the

parallelogram identity, you can use it to do it.
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Example: is a Banach space with a sup norm and cannot be made into a𝐶[− 1,  1]

Hilbert space. You can do it with but it is easier to write it with . That𝐶[0,  1] 𝐶[− 1,  1]

means the parallelogram law will fail. So, you define . So that means,𝑢(𝑥) = 𝑚𝑖𝑛 (𝑥,  0)

how does a graph of look like? When is negative, it takes the value and then𝑢(𝑥) 𝑥 𝑥

when becomes positive, then it is 0. Then . So, these are the two functions𝑥 𝑣(𝑥) = 𝑥 𝑢

and . Then , you can easily see. So and𝑣 ||𝑢||
∞

= ||𝑣||
∞

= 1 𝑢+𝑣
2

|| |||| ||
∞

= 1 𝑢−𝑣
2

|| |||| || = 1
2

and you see that the parallelogram law fails for these pairs of functions.
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Theorem. Hilbert. is uniformly convex and hence, it is reflexive.𝐻 𝐻

Proof. and , , then from the parallelogram law, you||𝑥|| ≤ 1 ||𝑦|| ≤ 1 ||𝑥 − 𝑦|| > ϵ

will get for suitable and therefore you have uniform𝑥+𝑦
2

|| |||| ||
2

≤ 1 − ϵ2

4 = (1 − δ)2 ϵ 

convexity and we know that every uniformly convex space is a reflex. So, every Hilbert

space is reflexive.
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Now, when , Holderz Cauchy-Schwartz and what does it mean? In the𝑝 = 2 = 𝑝*

notation which I wrote earlier, . So, this is the Holder inequality|(𝑥,  𝑦)| ≤ ||𝑥||
2
 ||𝑦||

2

applied to and . to or to , whatever space𝑝 = 2 = 𝑝* (𝑥,  𝑦) = ∑ 𝑥
𝑖
 𝑦

𝑖
𝑖 = 1 𝑛 𝑖 = 1 ∞

you are working with. So, this is in fact a fundamental property of Hilbert spaces. So, we

have the following theorem.
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Theorem: (Cauchy-Schwarz inequality) is a Hilbert space and . Then,𝐻 𝑥,  𝑦 ∈ 𝐻

. This is a very fundamental inequality which will be used again|(𝑥,  𝑦)| ≤ ||𝑥|| ||𝑦||

and again and again. Equality occurs if and only if and are scalar multiples of each𝑥 𝑦

other.

Proof. We will do it for the complex case, the real case will be a particular case of that.

So, let us assume, such that and . We have done thisθ ∈ ℂ |θ| = 1 θ(𝑥,  𝑦) = |(𝑥,  𝑦)|

before, in various examples. Given a complex number can be written as . So any𝑟 𝑒𝑖θ 

complex number can be written as a number with modulus 1.

If , we have . So, let us expand this. This will give you𝑡 ∈  ℝ 0 ≤ ||θ 𝑥 − 𝑡 𝑦||2

as . Now, what is ? So,||𝑥||2 − 2𝑡 ℜ(θ 𝑥,  𝑦) + 𝑡2||𝑦||2 |θ| = 1 ℜ(θ 𝑥,  𝑦)

, it is a real number anyway. So,(θ 𝑥,  𝑦) = θ(𝑥,  𝑦) = |(𝑥,  𝑦)|

. So, you have a quadratic||θ 𝑥 − 𝑡 𝑦||2 = ||𝑥||2 − 2𝑡 |(𝑥,  𝑦)| + 𝑡2||𝑦||2 ≥ 0

polynomial which is non negative, which is of constant sign. That means, you are having

a parabola which never changes sign. That means it does not have any real roots, that

means its roots are imaginary. So, this is true for all and therefore, you have that𝑡 ∈  ℝ

the roots of this quadratic should be imaginary. So, , that means𝑏2 < 4𝑎𝑐

and that implies . So, that proves the4|(𝑥,  𝑦)|2 ≤ 4 ||𝑥||2 ||𝑦||2 |(𝑥,  𝑦)|2 ≤  ||𝑥||2 ||𝑦||2

Cauchy-Schwarz inequality which is a fundamental inequality as I said.

So, if you want equality in this, you should have that the roots should be equal. That

means should be equal to , where is a root of this quadratic polynomial and thatθ 𝑥 𝑡
0
 𝑦 𝑡

0

proves whatever we wanted to prove. Because you want equality means,

only then, so that means must be a root of this||𝑥||2 − 2𝑡 |(𝑥,  𝑦)| + 𝑡2||𝑦||2 = 0 𝑡

thing and it should be a perfect square and therefore you have .θ 𝑥 = 𝑡
0
𝑦
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Corollary. Hilbert and . So, define . Now, I am𝐻 𝑦 ∈ 𝐻 𝑓
𝑦
(𝑥) = (𝑥,  𝑦)  ∀ 𝑥 ∈ 𝐻

writing in this fashion with in the second coordinate, so that it is linear in the first𝑦

coordinate and therefore even in the complex case or real case, it does not matter which,

this is always a linear functional. Therefore, by the Cauchy-Schwarz |𝑓
𝑦
(𝑥)| ≤ ||𝑥|| ||𝑦||

Therefore, and . So, assume that and you take .𝑓
𝑦
 ∈ 𝐻* ||𝑓

𝑦
|| ≤ ||𝑦|| 𝑦 ≠ 0 𝑥 = 𝑦

||𝑦||

So, and . So, the maximum is reached on||𝑥|| = 1 𝑓
𝑦
(𝑥) = ( 𝑦

||𝑦|| , 𝑦) = ||𝑦||2

||𝑦|| = ||𝑦||

the unit sphere and this implies . So, this is the proof. Let me state the||𝑓
𝑦
|| = ||𝑦||

theorem. and . So, that was the corollary and I have already𝑓
𝑦
 ∈ 𝐻* ||𝑓

𝑦
|| = ||𝑦||

proved it.

So, we will see in the next chapter that every continuous linear functional, in fact arises in

this fashion. So, is isomorphic to its own dual and so very often, especially in the real𝐻

case we can identify the two.

Corollary. Hilbert. Let weakly converge to and converge to . Then,𝐻 𝑥
𝑛

𝑥 𝑦
𝑛

𝑦 (𝑥
𝑛
,  𝑦

𝑛
)

converges to . So, when you have two, an inner product and one term converges (𝑥,  𝑦)

weakly and one term converges strongly, then the limit is still natural, whatever you

expect. So, if both of them are weak, then you cannot expect it.Like, for instance in 𝐿
𝑝



spaces also we saw an example. went weakly to 0, but went weakly to .cos  𝑛𝑡 cos2 𝑛𝑡 1
2

So, you cannot expect normally, when you are dealing with the product of weak

convergence to behave properly, you do not know what will happen but if one is weak

and one is strong, then you are on safe ground.

Proof. .|(𝑥
𝑛
,  𝑦

𝑛
) − (𝑥,  𝑦)| ≤ |(𝑥

𝑛
,  𝑦

𝑛
− 𝑦)| + |(𝑥

𝑛
− 𝑥,  𝑦)|

Now, by Cauchy-Schwarz inequality, .|(𝑥
𝑛
,  𝑦

𝑛
− 𝑦)| ≤ ||𝑥

𝑛
|| ||𝑦

𝑛
− 𝑦||

|(𝑥
𝑛
,  𝑦

𝑛
) − (𝑥,  𝑦)| ≤ ||𝑥

𝑛
|| ||𝑦

𝑛
− 𝑦|| + |𝑓

𝑦
(𝑥

𝑛
− 𝑥)| ≤ 𝑀||𝑦

𝑛
− 𝑦|| + |𝑓

𝑦
(𝑥

𝑛
− 𝑥)|

as every weakly convergence sequence is bounded.
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The first one goes to 0 because converges to strongly and the second term goes to 0𝑦
𝑛

𝑦

because converges to weakly and therefore converges to . In𝑥
𝑛

𝑥 (𝑥
𝑛
,  𝑦

𝑛
)  (𝑥,  𝑦)

particular, if and , both of them are strong, then . That is𝑥
𝑛

→ 𝑥 𝑦
𝑛

→ 𝑦 (𝑥
𝑛
,  𝑦

𝑛
) →  (𝑥,  𝑦)

now obvious that you could have done it in many ways directly. But now you know if it

converges in norm, then it converges weakly. So, weakly as well and in𝑥
𝑛

→ 𝑥 𝑦
𝑛

→ 𝑦

norm and therefore you have this.


