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15. Let . Then, is well defined and So,𝑓,  𝑔 ∈  𝐿1(ℝ𝑁) 𝑓 * 𝑔 ||𝑓 *  𝑔||
1

≤ ||𝑓||
1
||𝑔||

1
.

this is Young’s Inequality when . We have already done when it is , so this is𝑝 = 1 𝑝

easier, in fact.

Solution. We look at the integral, , everything is
ℝ

𝑥
𝑁

∫
ℝ

𝑦
𝑁

∫ |𝑓(𝑦) 𝑔(𝑥 − 𝑦)| 𝑑𝑦 𝑑𝑥

non-negative in the integrand, so you can interchange the order of integration.

.
ℝ

𝑥
𝑁

∫
ℝ

𝑦
𝑁

∫ |𝑓(𝑦) 𝑔(𝑥 − 𝑦)| 𝑑𝑦 𝑑𝑥 =
ℝ

𝑦
𝑁

∫ |𝑓(𝑦)|
ℝ

𝑥
𝑁

∫ |𝑔(𝑥 − 𝑦)| 𝑑𝑥 𝑑𝑦 



So, is a constant as far as the inner integral is concerned and is just a𝑦 𝑔(𝑥 − 𝑦)

translated g and therefore by the translation invariance of Lebesgue measure,

is in fact equal to . It is a constant, it will come out. Therefore,
ℝ

𝑥
𝑁

∫ |𝑔(𝑥 − 𝑦)| 𝑑𝑥 ||𝑔||
1

ℝ
𝑦
𝑁

∫ |𝑓(𝑦)|
ℝ

𝑥
𝑁

∫ |𝑔(𝑥 − 𝑦)| 𝑑𝑥 𝑑𝑦 =  ||𝑔||
1

ℝ
𝑦
𝑁

∫ |𝑓(𝑦)| 𝑑𝑦 =  ||𝑔||
1
||𝑓||

1
< ∞.  

So, with the absolute value this is integrable. Therefore, by Fubini’s theorem, for almost

every , exists and therefore for almost every ,𝑥
ℝ𝑁
∫ 𝑓(𝑦) 𝑔(𝑥 − 𝑦) 𝑑𝑦 𝑥

is defined almost everywhere and of course(𝑓 * 𝑔)(𝑥) =
ℝ𝑁
∫ 𝑓(𝑦) 𝑔(𝑥 − 𝑦) 𝑑𝑦

, therefore you have|(𝑓 * 𝑔)(𝑥)| ≤
ℝ

𝑥
𝑁

∫
ℝ

𝑦
𝑁

∫ |𝑓(𝑦) 𝑔(𝑥 − 𝑦)| 𝑑𝑦 𝑑𝑥

. So, that completes that exercise. So, this is much easier than||𝑓 * 𝑔||
1

≤ ||𝑔||
1
||𝑓||

1
 

the case for one of the functions is in 𝐿𝑝.

(())(03:56).
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Problem 16. Let , finite interval. Let and bounded(𝑎,  𝑏) ⊂ ℝ 1 < 𝑝 ≤ ∞ {𝑓
𝑛
}

sequence in . Then show that𝐿𝑝(𝑎,  𝑏)

(i) , weakly converges to in1 < 𝑝 < ∞ 𝑓
𝑛

𝑓 𝐿𝑝(𝑎, 𝑏) ⇔
𝑎

𝑏

∫ 𝑓
𝑛
 ϕ 𝑑𝑥 →

𝑎

𝑏

∫ 𝑓 ϕ 𝑑𝑥,

. (ii) , so weak star in∀ϕ ∈ 𝐶
𝑐
(𝑎,  𝑏) 𝑝 = ∞ 𝑓

𝑛
→ 𝑓 𝐿∞(𝑎, 𝑏) ⇔

𝑎

𝑏

∫ 𝑓
𝑛
 ϕ 𝑑𝑥 →

𝑎

𝑏

∫ 𝑓 ϕ 𝑑𝑥,

∀ϕ ∈ 𝐶
𝑐
(𝑎,  𝑏)

Solution. Let us look at . So, let us assume that weakly converges to in1 < 𝑝 < ∞ 𝑓
𝑛

𝑓

. So, this implies for every , you have𝐿𝑝 ϕ ∈ 𝐿𝑝*(𝑎,  𝑏)
𝑎

𝑏

∫ 𝑓
𝑛
 ϕ 𝑑𝑥 →

𝑎

𝑏

∫ 𝑓 ϕ 𝑑𝑥

and, in particular, . It is in any space and therefore in particular you𝐶
𝑐
(𝑎,  𝑏) ⊂ 𝐿𝑝* 𝐿𝑝

have that for every , this happens. Conversely, letϕ
𝑎

𝑏

∫ 𝑓
𝑛
 ϕ 𝑑𝑥 →

𝑎

𝑏

∫ 𝑓 ϕ 𝑑𝑥,



. Then, given any , there exists , such that∀ϕ ∈ 𝐶
𝑐
(𝑎,  𝑏)  𝑔 ∈ 𝐿𝑝*(𝑎,  𝑏) ϕ ∈ 𝐶

𝑐
(𝑎,  𝑏)

. So,||𝑔 − ϕ||
𝑝*

< ϵ

𝑎

𝑏

∫ 𝑓
𝑛
 𝑔 𝑑𝑥 −  

𝑎

𝑏

∫ 𝑓𝑔 𝑑𝑥
||||

||||
≤

𝑎

𝑏

∫ 𝑓
𝑛
 (𝑔 − ϕ) 𝑑𝑥

||||

||||
+

𝑎

𝑏

∫ 𝑓
𝑛
 ϕ 𝑑𝑥 −

𝑎

𝑏

∫ 𝑓 ϕ 𝑑𝑥
||||

||||
+

𝑎

𝑏

∫ 𝑓(ϕ − 𝑔)𝑑𝑥
||||

||||

≤ ||𝑓
𝑛
||

𝑝
 ||𝑔 − ϕ||

𝑝*
+

𝑎

𝑏

∫ 𝑓
𝑛
 ϕ 𝑑𝑥 −

𝑎

𝑏

∫ 𝑓 ϕ 𝑑𝑥
||||

||||
+  ||𝑓||

𝑝
 ||ϕ − 𝑔||

𝑝*

( is given to be a bounded sequence in i.e. and by the Holder𝑓
𝑛

𝐿𝑝,  ||𝑓
𝑛
||

𝑝
≤ 𝑀

inequality)

.≤  𝑀 ϵ +
𝑎

𝑏

∫ 𝑓
𝑛
 ϕ 𝑑𝑥 −

𝑎

𝑏

∫ 𝑓 ϕ 𝑑𝑥
||||

||||
 +  ||𝑓||

𝑝
 ϵ
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Given that Therefore everything can be made arbitrarily
𝑎

𝑏

∫ 𝑓
𝑛
 ϕ 𝑑𝑥 −

𝑎

𝑏

∫ 𝑓 ϕ 𝑑𝑥
||||

||||
→ 0.

small, so this implies that and that is, weakly
𝑎

𝑏

∫ 𝑓
𝑛
 𝑔 𝑑𝑥 →  

𝑎

𝑏

∫ 𝑓𝑔 𝑑𝑥,   ∀𝑔 ∈ 𝐿𝑝*(𝑎,  𝑏) 𝑓
𝑛

converges to in . So, that proves (i).𝑓 𝐿𝑝
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(ii) so and you have is dense in . So, same proof as above𝑝 = ∞ 𝑝* = 1 𝐶
𝑐
(𝑎,  𝑏) 𝐿1

and therefore gives goes to We recall that
𝑎

𝑏

∫ 𝑓
𝑛
 𝑔 𝑑𝑥

𝑎

𝑏

∫ 𝑓 𝑔 𝑑𝑥    ∀𝑔 ∈ 𝐿1(𝑎,  𝑏).

and therefore if you are doing this, and if this happens in the pre dual(𝐿1)* = 𝐿∞ 𝑓
𝑛

∈ 𝐿∞

space, then this implies that in weak star. So, this is the characterization we had𝑓
𝑛

→ 𝑓

and therefore we have this.
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Problem 17. Let continuous and So it is a periodic𝑓:  [0,  1] → ℝ 𝑓(0) = 𝑓(1).

function. Define So we are rescaling the same function.𝑓
𝑛
(𝑥) = 𝑓(𝑛𝑥),  𝑥 ∈ [0,  1/𝑛].

So I have a function which is say, something like this. The end values need not be .𝑓 0

0                               1              0         1/n . . .k-1/n      k/n. . . . . . . n-1/n . . n/n2/𝑛

So now, we are taking and dividing it into n equal parts, as shown here and then[0,  1]

reproduce the same function in each interval [ ]. So, after scaling you simply𝑘−1
𝑛 ,  𝑘

𝑛

move that function. So, let which of course will be finite because is a𝑚 =
0

1

∫ 𝑓(𝑡) 𝑑𝑡 𝑓

continuous function. Then, define . Then, is of course in all𝑔(𝑡) = 𝑚,   ∀𝑡 ∈ [0,  1] 𝑓
𝑛

the spaces because it is a continuous function on a compact set and that is why we𝐿𝑝



took periodic, because when we take the same value at the end points and then you

repeat, then it becomes a continuous function. So, is a continuous function on a𝑓

compact set, therefore it is in all the spaces and therefore you have fn weakly𝐿𝑝

converges to in , and weak star converges to g in . So𝑔 𝐿𝑝(0, 1) 1 < 𝑝 < ∞ 𝑓
𝑛

𝐿∞(0,  1)

this function which we have scaled and reproduced, converges in either weakly or in𝐿𝑝

weak star to the average value because is nothing but the integral of divided∫ 𝑓(𝑡) 𝑑𝑡 𝑓

by the length of the interval, so this is nothing but the mean value or the average value of

the function in this. So, this periodic scaling and periodic repetition, if you do, then that

sequence converges to the average value of . So that is, in the weak or weak star𝑓

topology depending on the space.
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Solution. By exercise 16, enough to show that , you have∀ ϕ ∈ 𝐶
𝑐
(0,  1)

0

1

∫ 𝑓
𝑛
 ϕ 𝑑𝑥 →

0

1

∫ 𝑔 ϕ 𝑑𝑥 = 𝑚
0

1

∫ ϕ 𝑑𝑥



So, let us compute . I am going to split into the various intervals.
0

1

∫ 𝑓
𝑛
 ϕ 𝑑𝑥

0

1

∫ 𝑓
𝑛
 ϕ 𝑑𝑥 =  

𝑘=1

𝑛

∑
𝑘−1

𝑛

𝑘
𝑛

∫ 𝑓
𝑛
(𝑡)ϕ(𝑡) 𝑑𝑡 =

𝑘=1

𝑛

∑
𝑘−1

𝑛

𝑘
𝑛

∫ 𝑓
𝑛
(𝑡) ϕ(𝑡) − ϕ( 𝑘−1

𝑛 )⎡⎣ ⎤⎦ 𝑑𝑡 +
𝑘=1

𝑛

∑ ϕ( 𝑘−1
𝑛 )

𝑘−1
𝑛

𝑘
𝑛

∫ 𝑓
𝑛
(𝑡) 𝑑𝑡

Now, is continuous with compact support. Therefore, it is uniformly continuous.ϕ

Therefore, given such that, if , we haveϵ > 0   ∃ δ > 0 1
𝑛 < δ

. Because if ,ϕ(𝑡) − ϕ( 𝑘−1
𝑛 )|| || < ϵ    ∀ 𝑡 ∈ [ 𝑘−1

𝑛 ,  𝑘
𝑛 ]  𝑡 ∈ [ 𝑘−1

𝑛 ,  𝑘
𝑛 ]

, is the length of this interval. Therefore,𝑡 − 𝑘−1
𝑛  <  1

𝑛 <  δ 1
𝑛

and also you have that , say. So, let us look at theϕ(𝑡) − ϕ( 𝑘−1
𝑛 )|| || < ϵ ||𝑓||

∞
≤ 𝑀

first term.
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So, . So, that is the first
𝑘=1

𝑛

∑
𝑘−1

𝑛

𝑘
𝑛

∫ 𝑓
𝑛
(𝑡) ϕ(𝑡) − ϕ( 𝑘−1

𝑛 )⎡⎣ ⎤⎦ 𝑑𝑡
|||||

|||||
 ≤ ϵ 

0

1

∫ |𝑓
𝑛
(𝑡)| 𝑑𝑡 ≤ ϵ 𝑀

term. Now, let us look at the second term.

. Because we have just repeated the
𝑘−1

𝑛

𝑘
𝑛

∫ 𝑓
𝑛
(𝑡) 𝑑𝑡 =

0

1
𝑛

∫ 𝑓(𝑛𝑥) 𝑑𝑥 = 1
𝑛

0

1

∫ 𝑓(𝑡) 𝑑𝑡 = 𝑚
𝑛

function again and again, so integral on any such interval is
𝑘−1

𝑛

𝑘
𝑛

∫ 𝑓
𝑛
(𝑡) 𝑑𝑡 [ 𝑘−1

𝑛 ,  𝑘
𝑛 ]

nothing but the integral .
0

1
𝑛

∫ 𝑓(𝑛𝑥) 𝑑𝑥

So, this is what you get from this, for every . So, this is for every and therefore you𝑘 𝑘

get that second term .
𝑘=1

𝑛

∑ φ( 𝑘−1
𝑛 )

𝑘−1
𝑛

𝑘
𝑛

∫ 𝑓
𝑛
(𝑡)𝑑𝑡 = 𝑚

𝑛
𝑘=1

𝑛

∑ φ( 𝑘−1
𝑛 ) → 𝑚

0

1

∫ ϕ(𝑥) 𝑑𝑥 𝑛 → ∞

Now, as , is nothing but Riemann's sum. is the length of each of𝑛 → ∞ 1
𝑛

𝑘=1

𝑛

∑ φ( 𝑘−1
𝑛 ) 1

𝑛

these intervals, where I am taking the value of the lowest point and is a continuousϕ

function. So, for any point it should converge to . So, that is exactly what we𝑚
0

1

∫ ϕ(𝑥) 𝑑𝑥

want. We have shown that for every , converges. So, the firstϕ ∈ 𝐶
𝑐
(0,  1)

0

1

∫ 𝑓
𝑛
 ϕ 𝑑𝑥

term goes to 0 because it is arbitrarily small, it is less than . The second termϵ
𝑚

converges to and that is precisely what we want to show.𝑚
0

1

∫ ϕ 𝑑𝑥

 ∀ ϕ ∈ 𝐶
𝑐
(0,  1),   

0

1

∫ 𝑓
𝑛
 ϕ 𝑑𝑥  →  𝑛

0

1

∫ ϕ 𝑑𝑥
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And that is weakly in𝑓
𝑛

→ 𝑓 𝐿𝑝(0,  1),    1 < 𝑝 <  ∞.  

and it goes to weak star, g in where𝐿∞(0,  1) 𝑔 ≡ 𝑚 =
0

1

∫ 𝑓(𝑥) 𝑑𝑥.

So that is, so we will wind up with this and start a next, new chapter next time.


