Functional Analysis Professor. S. Kesavan Department of Mathematics The Institute of Mathematical Sciences Lecture No. 48

Exercises Part - 4

15. Let $f, g \in L^{1}(\mathbb{R}^{N})$. Then, f * g is well defined and $||f * g||_{1} \leq ||f||_{1} ||g||_{1}$. So, this is Young's Inequality when p = 1. We have already done when it is p, so this is easier, in fact.

Solution. We look at the integral, $\int_{\mathbb{R}_x^N \mathbb{R}_y^N} \int |f(y) g(x - y)| \, dy \, dx$, everything is

non-negative in the integrand, so you can interchange the order of integration.

$$\int_{\mathbb{R}^N_x} \int_{\mathbb{R}^N_y} |f(y) g(x-y)| \, dy \, dx = \int_{\mathbb{R}^N_y} |f(y)| \int_{\mathbb{R}^N_x} |g(x-y)| \, dx \, dy$$

So, y is a constant as far as the inner integral is concerned and g(x - y) is just a translated g and therefore by the translation invariance of Lebesgue measure, $\int_{\mathbb{R}_x^N} |g(x - y)| \, dx \text{ is in fact equal to } ||g||_1. \text{ It is a constant, it will come out. Therefore,}$

$$\int_{\mathbb{R}^{N}_{y}} |f(y)| \int_{\mathbb{R}^{N}_{x}} |g(x - y)| \, dx \, dy = ||g||_{1} \int_{\mathbb{R}^{N}_{y}} |f(y)| \, dy = ||g||_{1} ||f||_{1} < \infty.$$

So, with the absolute value this is integrable. Therefore, by Fubini's theorem, for almost every x, $\int_{\mathbb{R}^{N}} f(y) g(x - y) dy$ exists and therefore for almost every x,

 $(f * g)(x) = \int_{\mathbb{R}^{N}} f(y) g(x - y) dy$ is defined almost everywhere and of course

$$|(f * g)(x)| \leq \int_{\mathbb{R}^N_x \mathbb{R}^N_y} |f(y) g(x - y)| \, dy \, dx, \text{ therefore you have}$$

 $||f * g||_1 \le ||g||_1 ||f||_1$. So, that completes that exercise. So, this is much easier than the case for one of the functions is in L^p .

(())(03:56).

(Refer Slide Time: 03:55)

(b) Let
$$(a_{j}c) \subset ii?$$
 finite interval. Let $1 \langle z_{j} \geq a_{0}$.
 $\{f_{n}\}\ bdd reag.$ in $\mathbb{P}(a_{j}c)$. Show that
(i) $1 $f_{n} \rightarrow f$ in $\mathbb{P}(a_{j}c)$. Show that
(ii) $p \geq \infty$ $f_{n} \rightarrow f$ in $\mathbb{P}(a_{j}c) \langle \Rightarrow \rangle$ $f_{n}\varphi^{n} \rightarrow \int f\varphi dx + \forall \varphi \in \langle a_{j}c \rangle$.
(ii) $p \geq \infty$ $f_{n} \rightarrow f$ in $\mathbb{P}(a_{j}c) \langle \Rightarrow \rangle$ $f_{n}\varphi dx \rightarrow \int f\varphi dx + \forall \varphi \in \langle a_{j}c \rangle$.
(ii) $p \geq \infty$ $f_{n} \rightarrow f$ in $\mathbb{P}(a_{j}c) \langle \Rightarrow \rangle$ $f_{n}\varphi dx \rightarrow \int f\varphi dx + \forall \varphi \in \langle a_{j}c \rangle$.
Sol. (i) $1 . $f_{n} \rightarrow f$ in $\mathbb{P}(a_{j}c)$. $\Rightarrow \forall \varphi \in \mathbb{P}^{k}(a_{j}c)$.
 $\int f_{n}\varphi^{k} \rightarrow \int f\varphi dx \cdot \& \langle c_{j}(a_{j}c) \rangle = \int f_{n}\varphi^{k}(a_{j}c)$.
 $\int g \in \mathbb{P}(a_{j}c) = \exists \varphi \in \mathcal{Q}(a_{j}c)$ $\exists \varphi \in \mathcal{Q}(a_{j}c)$ $d \varphi \in \mathcal{$$$

Problem 16. Let $(a, b) \subset \mathbb{R}$, finite interval. Let $1 and <math>\{f_n\}$ bounded sequence in $L^p(a, b)$. Then show that

(i) $1 , <math>f_n$ weakly converges to f in $L^p(a, b) \Leftrightarrow \int_a^b f_n \phi \, dx \to \int_a^b f \phi \, dx$, $\forall \phi \in C_c(a, b)$. (ii) $p = \infty$, so $f_n \to f$ weak star in $L^\infty(a, b) \Leftrightarrow \int_a^b f_n \phi \, dx \to \int_a^b f \phi \, dx$, $\forall \phi \in C_c(a, b)$

Solution. Let us look at $1 . So, let us assume that <math>f_n$ weakly converges to f in L^p . So, this implies for every $\phi \in L^{p^*}(a, b)$, you have $\int_a^b f_n \phi \, dx \to \int_a^b f \phi \, dx$

and, in particular, $C_c(a, b) \subset L^{p^*}$. It is in any L^p space and therefore in particular you have that for every ϕ , this happens. Conversely, let $\int_a^b f_n \phi \, dx \to \int_a^b f \phi \, dx$,

$$\begin{aligned} \forall \phi \in C_c(a, b). \text{ Then, given any } g \in L^{p^*}(a, b), \text{ there exists } \phi \in C_c(a, b), \text{ such that} \\ ||g - \phi||_{p^*} < \epsilon. \text{ So,} \\ \left| \int_a^b f_n g \, dx - \int_a^b fg \, dx \right| &\leq \left| \int_a^b f_n (g - \phi) \, dx \right| + \left| \int_a^b f_n \phi \, dx - \int_a^b f \phi \, dx \right| + \left| \int_a^b f(\phi - g) \, dx \right| \\ &\leq \left| |f_n||_p \left| |g - \phi| \right|_{p^*} + \left| \int_a^b f_n \phi \, dx - \int_a^b f \phi \, dx \right| + \left| |f||_p \left| |\phi - g| \right|_{p^*} \end{aligned}$$

 $(f_n \text{ is given to be a bounded sequence in } L^p, \text{ i.e. } ||f_n||_p \le M \text{ and by the Holder inequality})$

$$\leq M \epsilon + \left| \int_{a}^{b} f_{n} \phi \, dx - \int_{a}^{b} f \phi \, dx \right| + \left| \left| f \right| \right|_{p} \epsilon$$

(Refer Slide Time: 08:52)

Sol. (i)
$$1 \le p \le \infty$$
. $f_n _ f_{in} \bot_{(\alpha, (c))} \Longrightarrow \forall \varphi \in \bigsqcup_{(\alpha, (c))}^{k} (a_i)$
 $\int f_n \varphi^k \longrightarrow \int f \varphi^{d_k} \cdot \& C_{(\alpha, (c))} C_{(\alpha, (c))}^{k}$
Convendy $\int f_n \varphi^{d_k} \longrightarrow \int f \varphi^{d_k} \lor \varphi \in C_{(\alpha, (c))}$.
 $g \in \bigsqcup_{(\alpha, (c))}^{k} \exists \varphi \in C_{(\alpha, (c))} \qquad \square_{g \to (c)}^{k} (g - \varphi) \exists g + \bigcup_{(\alpha, (c))}^{k} (g - \varphi) (g - \varphi) \exists g + \bigcup_{(\alpha, (c))}^{k} (g - \varphi) ($

Given that $\left| \int_{a}^{b} f_{n} \phi \, dx - \int_{a}^{b} f \phi \, dx \right| \to 0$. Therefore everything can be made arbitrarily small, so this implies that $\int_{a}^{b} f_{n} g \, dx \to \int_{a}^{b} fg \, dx$, $\forall g \in L^{p^{*}}(a, b)$ and that is, f_{n} weakly

converges to f in L^p . So, that proves (i).

(Refer Slide Time: 10:24)

(ii) $p = \infty$ so $p^* = 1$ and you have $C_c(a, b)$ is dense in L^1 . So, same proof as above and therefore gives $\int_a^b f_n g \, dx$ goes to $\int_a^b f g \, dx \quad \forall g \in L^1(a, b)$. We recall that $(L^1)^* = L^\infty$ and therefore if you are doing this, $f_n \in L^\infty$ and if this happens in the pre dual space, then this implies that $f_n \to f$ in weak star. So, this is the characterization we had and therefore we have this.

(Refer Slide Time: 11:38)

Problem 17. Let $f: [0, 1] \to \mathbb{R}$ continuous and f(0) = f(1). So it is a periodic function. Define $f_n(x) = f(nx), x \in [0, 1/n]$. So we are rescaling the same function. So I have a function f which is say, something like this. The end values need not be 0.

So now, we are taking [0, 1] and dividing it into n equal parts, as shown here and then reproduce the same function in each interval $\left[\frac{k-1}{n}, \frac{k}{n}\right]$. So, after scaling you simply move that function. So, let $m = \int_{0}^{1} f(t) dt$ which of course will be finite because f is a continuous function. Then, define g(t) = m, $\forall t \in [0, 1]$. Then, f_n is of course in all the L^p spaces because it is a continuous function on a compact set and that is why we

took periodic, because when we take the same value at the end points and then you repeat, then it becomes a continuous function. So, f is a continuous function on a compact set, therefore it is in all the L^p spaces and therefore you have fn weakly converges to g in $L^p(0, 1)$, $1 and <math>f_n$ weak star converges to g in $L^\infty(0, 1)$. So this function which we have scaled and reproduced, converges in L^p either weakly or in weak star to the average value because $\int f(t) dt$ is nothing but the integral of f divided by the length of the interval, so this is nothing but the mean value or the average value of the function in this. So, this periodic scaling and periodic repetition, if you do, then that sequence converges to the average value of f. So that is, in the weak or weak star topology depending on the space.

(Refer Slide Time: 15:42)

Solution. By exercise 16, enough to show that $\forall \phi \in C_c(0, 1)$, you have

$$\int_{0}^{1} f_{n} \phi \, dx \to \int_{0}^{1} g \phi \, dx = m \int_{0}^{1} \phi \, dx$$

So, let us compute $\int_{0}^{1} f_n \phi dx$. I am going to split into the various intervals.

$$\int_{0}^{1} f_{n} \phi \, dx = \sum_{k=1}^{n} \int_{\frac{k-1}{n}}^{\frac{k}{n}} f_{n}(t) \phi(t) \, dt = \sum_{k=1}^{n} \int_{\frac{k-1}{n}}^{\frac{k}{n}} f_{n}(t) \Big[\phi(t) - \phi(\frac{k-1}{n}) \Big] dt + \sum_{k=1}^{n} \phi(\frac{k-1}{n}) \int_{\frac{k-1}{n}}^{\frac{k}{n}} f_{n}(t) \, dt$$

Now, ϕ is continuous with compact support. Therefore, it is uniformly continuous. Therefore, given $\epsilon > 0 \exists \delta > 0$ such that, if $\frac{1}{n} < \delta$, we have $\left| \Phi(t) - \Phi(\frac{k-1}{n}) \right| < \epsilon \quad \forall t \in [\frac{k-1}{n}, \frac{k}{n}].$ Because if $t \in [\frac{k-1}{n}, \frac{k}{n}],$ $t - \frac{k-1}{n} < \frac{1}{n} < \delta$, $\frac{1}{n}$ is the length of this interval. Therefore, $\left| \phi(t) - \phi(\frac{k-1}{n}) \right| < \epsilon$ and also you have that $\left| |f| \right|_{\infty} \le M$, say. So, let us look at the first term.

So,
$$\left|\sum_{k=1}^{n} \int_{\frac{k-1}{n}}^{\frac{k}{n}} f_{n}(t) \left[\phi(t) - \phi(\frac{k-1}{n}) \right] dt \right| \leq \epsilon \int_{0}^{1} |f_{n}(t)| dt \leq \epsilon M$$
. So, that is the first

term. Now, let us look at the second term.

$$\int_{\frac{k-1}{n}}^{\frac{n}{n}} f_n(t) dt = \int_{0}^{\frac{1}{n}} f(nx) dx = \frac{1}{n} \int_{0}^{1} f(t) dt = \frac{m}{n}$$
. Because we have just repeated the

function again and again, so integral $\int_{\frac{k-1}{n}}^{\frac{k}{n}} f_n(t) dt$ on any such interval $[\frac{k-1}{n}, \frac{k}{n}]$ is

nothing but the integral $\int_{0}^{\frac{1}{n}} f(nx) dx$.

So, this is what you get from this, for every k. So, this is for every k and therefore you get that second term $\sum_{k=1}^{n} \varphi(\frac{k-1}{n}) \int_{\frac{k-1}{n}}^{\frac{k}{n}} f_n(t) dt = \frac{m}{n} \sum_{k=1}^{n} \varphi(\frac{k-1}{n}) \to m \int_{0}^{1} \varphi(x) dx \quad n \to \infty.$

Now, as $n \to \infty$, $\frac{1}{n} \sum_{k=1}^{n} \varphi(\frac{k-1}{n})$ is nothing but Riemann's sum. $\frac{1}{n}$ is the length of each of these intervals, where I am taking the value of the lowest point and ϕ is a continuous function. So, for any point it should converge to $m \int_{0}^{1} \phi(x) dx$. So, that is exactly what we want. We have shown that for every $\phi \in C_c(0, 1)$, $\int_{0}^{1} f_n \phi dx$ converges. So, the first term goes to 0 because it is arbitrarily small, it is less than ϵ_m . The second term converges to $m \int_{0}^{1} \phi dx$ and that is precisely what we want to show. $\forall \phi \in C_c(0, 1)$, $\int_{0}^{1} f_n \phi dx \to n \int_{0}^{1} \phi dx$

(Refer Slide Time: 24:07)

$$\int_{k=1}^{k} \frac{y_{n}}{y_{n}} (y_{n}) dk = \int_{0}^{y_{n}} \frac{1}{f(n_{2})} dk = \frac{1}{n} \int_{0}^{l} \frac{f(l)}{f(l)} dl = \frac{m}{n}$$

$$= \int_{k=1}^{\infty} \frac{\varphi(k_{1})}{y_{n}} \int_{0}^{l} \frac{f_{1}(l)}{f_{1}(l)} dk = \frac{m}{n} \frac{2}{h_{2}} \frac{\varphi(k_{1})}{h_{2}} \longrightarrow \frac{1}{n} \int_{0}^{l} \frac{\varphi(k_{2})}{h_{2}} dk$$

$$= \int_{k=1}^{\infty} \frac{\varphi(k_{1})}{h_{2}} \int_{0}^{l} \frac{f_{1}(l)}{h_{2}} dk \rightarrow m \int_{0}^{l} \frac{\varphi(k_{2})}{h_{2}} \longrightarrow \frac{1}{n} \int_{0}^{l} \frac{\varphi(k_{2})}{h_{2}} dk$$

$$= \int_{0}^{l} \frac{f_{1}(l)}{h_{2}} dk \rightarrow m \int_{0}^{l} \frac{\varphi(k_{2})}{h_{2}} dk$$

$$= \int_{0}^{l} \frac{f_{1}(l)}{h_{2}} dk \rightarrow m \int_{0}^{l} \frac{\varphi(k_{2})}{h_{2}} dk$$

$$= \int_{0}^{l} \frac{f_{1}(l)}{h_{2}} dk \rightarrow m \int_{0}^{l} \frac{\varphi(k_{2})}{h_{2}} dk$$

$$= \int_{0}^{l} \frac{f_{1}(l)}{h_{2}} dk$$

$$= \int_{0}^{l} \frac{f_{1}(l)}{h_{2}} dk$$

$$= \int_{0}^{l} \frac{f_{1}(l)}{h_{2}} dk$$

And that is $f_n \to f$ weakly in $L^p(0, 1)$, 1 .

and it goes to weak star, g in $L^{\infty}(0, 1)$ where $g \equiv m = \int_{0}^{1} f(x) dx$.

So that is, so we will wind up with this and start a next, new chapter next time.